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Preface 

In the fall of 2006, the University of Maryland, along with various government and 
industrial sponsors, invited leading researchers from all over the world to a two-day 
Summit on Arabic and Chinese Handwriting Recognition (SACH 2006). The event 
acted as a complement to the biennial Symposium on Document Image Understanding 
Technology (SDIUT), providing a focused glimpse into the state of the art in Arabic and 
Chinese handwriting recognition. It offered a forum for interaction with prominent 
researchers at the forefront of the scientific community and provided an opportunity for 
participants to help explore possible directions of the field. This book is a result of the 
expansion, peer review, and revision of selected papers presented at this meeting. 

Handwriting recognition remains the Holy Grail of document analysis, and Arabic 
and Chinese scripts embrace many of the most significant challenges. We are pleased 
to have 16 scientific papers covering the original topics of handwritten Arabic and 
Chinese, as well as 2 papers covering other handwritten scripts. We asked each author 
to not only describe the techniques used in addressing the problem, but to attempt to 
identify the key research challenges and problems that the community faces. The 
result is an impressive collection of manuscripts that provide various detailed views 
of the state of research. 

In this book, six articles deal directly with Arabic handwriting.   
 

• Cheriet provides an overview of the problems of Arabic recognition and how 
systems can use natural language processing techniques to correct errors in 
lexicon-based systems. 

• Suen et al. focus on Persian script, providing a historical survey of the 
language and techniques used in recognition. 

• Belaid et al. provide a hybrid approach that attempts to take advantage of 
both local and global properties of the language. 

• Srihari et al. focus on the problem of search, providing an image-based 
technique for matching words in Arabic documents. 

• Abdulkader introduces language models taking advantage of Part of Arabic 
Words (PAWS) to aid segmentation. 

 
With the increased interest in Arabic recognition, evaluation is of increased interest as 
well.  

 

• Märgner and El Abed provide a survey of datasets and competitions that 
have emerged in recent years for Arabic handwriting recognition. 

 

The history of Chinese handwriting recognition research is much longer than the 
research record for Arabic handwriting recognition.   

 

 



VI Preface 

• Liu provides an extensive survey of the effects of normalization and feature 
extraction on recognition of Chinese. 

• Fujisawa explores techniques for dealing with uncertainty in the Chinese 
postal automation domain. 

• Guo describes an approach to clustering in a coarse-to-fine hierarchical 
classification system. 

• Chang describes techniques for dealing with the large-scale classification 
problems of Chinese character recognition. 

• Nakagawa et al. discuss the challenges and techniques for the online Chinese 
character recognition problem. 

 
To contrast techniques developed for Chinese and Arabic, several papers have been 
included that address cross cutting methods applied to other languages. 

 

• Ding et al. apply a segmentation-driven approach to the recognition of both 
Chinese and Arabic. 

• Lopresti et al. focus on word recognition using language models, introducing 
two new classifiers that are able to adapt for style-specific applications. 

• Natarajan describes a complete segmentation-free system that uses classical 
Hidden Markov Models. 

And finally 

• Bunke et al. describe a line-level recognition system applied to handwritten 
English text, and  

• Pal et al. describe their work on the recognition of South Indian handwritten 
scripts. 

With this book, we tried our best to provide you with a meaningful overview of the 
state of the art and research trends. We sincerely hope that the challenges set forth by 
these authors motivate other researchers to continue to address these difficult 
problems. 

 

  
November 2007                                                                                                                                                                                                                                                                        Stefan Jaeger 

David Doermann 
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Visual Recognition of Arabic Handwriting:  
Challenges and New Directions 

Mohamed Cheriet 

Laboratory for Imagery, Vision and Artificial Intelligence 
École de Technologie Supérieure (University of Quebec) 

1100 Notre-Dame West, Montreal, Quebec, Canada, H3C 1K3 
mohamed.cheriet@etsmtl.ca 

Abstract. Automatic recognition of Arabic handwritten text presents a problem 
worth solving; it has increasingly more interest, especially in recent years. In 
this paper, we address the most frequently encountered problems when dealing 
with Arabic handwriting recognition, and we briefly present some lessons 
learned from several serious attempts. We show why morphological analysis of 
Arabic handwriting could improve the accuracy of Arabic handwriting recogni-
tion. In general, Arabic Natural Language Processing could provide some error 
handling techniques that could be used effectively to improve the overall accu-
racy during post-processing. We give a summary of techniques concerning 
Arabic handwriting recognition research. We conclude with a case study about 
the recognition of Tunisian city names, and place emphasis on visual-based 
strategies for Arabic Handwriting Recognition (AHR). 

1   Introduction to Arabic Scripts 

Arabic, one of the six United Nations official languages, is the mother tongue of more 
than 300 million people [1, 14, 21]. Unlike Latin-derived writing, Arabic writing orients 
from right-to-left.  

 
Origin. A plausible hypothesis states that the Arabic scripts evolved from the Nabataean 
Aramaic scripts. It has been used since the 4th century AD, but the earliest document, an 
inscription in Arabic, Syriac and Greek, dates from 512 AD. The Aramaic language has 
fewer consonants than Arabic, so during the 7th century new Arabic letters were created 
by adding dots to existing letters to avoid ambiguities. Further diacritics indicating short 
vowels were introduced, but were only used to ensure the Qur'an was read aloud without 
mistakes. Two main types of written Arabic exist: 
 
1. Classical Arabic - the language of the Qur'an and classical literature. It is pure 

Arabic and differs from Modern Standard Arabic mainly in style and vocabulary, 
some of which remains undefined, unknown, and implicit.  
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2. Modern Standard Arabic - the universal language of the Arabic-speaking world 
understood by all its speakers. In addition to pure Arabic, it includes new foreign 
arabized words, scientific and technological terms. It is the Academic Language and 
the language of the vast majority of written material and formal TV shows, lectures, 
etc. MSA has a clear, well-determined vocabulary as well as explicit, well-
established morphological rules and grammar rules.  

Historically, the Qur'an was used intensively as a source (or reference) by linguists 
and grammarians to elicit vocabulary, morphological rules, and grammar. It is worth 
mentioning the feature of the Qur'an containing most if not all pure Arabic vocabulary, as 
well as all Arabic morphological and grammatical rules. However, each Arabic speaking 
country or region also has its own variety of colloquial Arabic. These colloquial varieties 
of Arabic appear in written form in some poetry, cartoons, and personal letters. 

Notable Features of Modern Standard Arabic: 

• As illustrated in Table 1, the Arabic alphabet contains 28 letters. Some additional 
letters appears for writing place names or foreign words containing sounds that 
do not occur in Standard Arabic, such as /p/ or /g/.  

• Words are written in horizontal lines from right to left, and numerals are written 
from left to right.  

• Most letters change form depending on whether they appear at the beginning, 
middle, or end of a word, or on their own.  

• Letters that can be joined are always joined in both handwritten and printed 
Arabic. The only exceptions to this rule are crossword puzzles and signs in which 
the scripts is written vertically.  

• The long vowels /a:/, /i:/ and /u:/ are represented by the letters 'alif, yā' and 
wāw, respectively.  

• As shown in Figure 1, vowel diacritics, used to mark short vowels and other 
special symbols, appear only in the Qur’an. They are also used, though with less 
consistency, in other religious texts, classical poetry, children’s textbooks, and 
by non-native language learners, and, occasionally, in complex texts to avoid 
ambiguity. Sometimes, the diacritics even have decorative purposes in book 
titles, letterheads, name places, etc.   

As illustrated in Figure 1, the diacritical marks are known as “Tashkeel” (vocaliza-
tion). Also, illustrated in Table 1, for some letters, dots are also placed either above or 
below the letter either as single dots or in groups of two or three.  

Arabic language. Arabic, a Semitic language, is spoken by approximately 300 million 
people in 22 countries, including: Afghanistan, Iran, Saudi Arabia, Egypt, and Morocco. 
There are more then 30 different varieties of colloquial Arabic which include the follow-
ing languages, according to the degrees of their similarities:  
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Table 1. Arabic Alphabet in all shapes. a) EF: End of Form b) MF: Middle of Form c) BF: 
Beginning of Form d) IF: Isolated Form. 

 

 

Fig. 1. Diacritics: Arabic marks known as “Tashkeel” 

• Algerian- spoken by 75 million people in Algeria, Tunisia, Libya and Occi- 
dental Sahara. 

• Egyptian - spoken by 50 million people in Egypt. 

• Moroccan/Maghrebi - spoken in Morocco by 25 million people.  

• Sudanese - spoken in Sudan by  25 million people.  

• Saidi - spoken by 20 million people in Egypt. 
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• North Levantine - spoken in Palestine, Lebanon and Syria by 30 million 
people.  

• Mesopotamian - spoken by 55 million people in Iraq, Iran and Syria.  

• Najdi - spoken in Saudi Arabia, Iraq, Jordan and Syria by 35 million people.  
 

For their utility, effectiveness, and convenience, printed and/or handwritten OCR sys-
tems are widely used in many government agencies, commercial departments, research 
laboratories, and libraries. After thirty years of intensive research, both printed and 
handwritten OCR products for most scripts (Latin, Hindi, Japanese, Korean, and Chi-
nese) have been developed well and are available in the market. 

Research in Arabic handwritten recognition began with early works by Amin [12-13]. 
Significant work has been done in the Arabic handwritten recognition area and several 
serious attempts have been undertaken to tackle the Arabic handwriting segmentation 
and recognition problem [1-5, 12-23]. 

However, despite the availability of several Arabic printed OCR products in the mar-
ket, to the our best knowledge, aside from research prototypes developed for the proof of 
concept, no operationally accurate Arabic handwritten OCR commercial product are 
available in the market. Thus, an Arabic handwritten OCR system should have signifi-
cant commercial value. Following the creation of Latin handwriting databases, as in [23], 
similar Arabic-related efforts have been devoted to the creation of Arabic handwriting 
databases [4-5] especially useful for training and benchmarking purposes. To date, the 
degree of success achieved in Arabic handwriting recognition has fallen short of the 
expected goal. 

The rest of the paper is structured as follows: In Section 2, we exhaustively address 
the most encountered problems when dealing with Arabic handwriting recognition, and 
briefly present lessons learned from several attempts undertaken in connection with Ara-
bic handwriting. In Section 3, in connection with the important post-processing stage, we 
show why, where, and how morphological analysis of Arabic characters could improve 
the accuracy of Arabic handwritten recognition; we also deal with Arabic Natural Lan-
guage Processing (NLP), and briefly present some techniques that could contribute to 
improving the accuracy of Arabic handwriting recognition. Section 4 gives a brief sum-
mary of ideas and techniques to generate an Arabic lexicon. In Section 5, we present a 
case study: visual-based recognition strategies for AHR. In Section 6, we conclude and 
give some perspectives and future trends concerning computational linguistics, natural 
language processing and soft computing, which constitute promising Arabic handwriting 
recognition research. 

2   Recognition Problems of Arabic Handwriting 

It is widely accepted that machine segmentation and recognition of handwritten Arabic 
scripts presents a difficult problem. Beyond the idealized assumptions, we distinguish 
among three categories of difficulties. Those that are inherent to the nature and character-
istics of the Arabic scripts (i.e. those that are writer independent); those that fall in the 
responsibility of the writer depending on  Arabic writing styles and various calligraphic 
styles (there are more than a dozen), some are shown in Figure 2. Finally, the third cate-
gory considers those induced by the quality of the scanned document, particularly for 
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highly degraded historical documents (see Figure 3), used for some applications of real 
world problems. 

 
Characteristics of the Three Categories of Difficulties for Arabic Recogni-
tion: 

 
The first category (writer independent) includes the following characteristics: 

• Context-dependency of the Arabic character shape, because each character changes 
its shape by the location of the characters (e.g., placed before or after other charac-
ters). So, the same character appears differently in different words, as it connects 
smoothly with the other characters placed in front and to the rear (see Table 1 for 
more details). 

• Cursiveness of the Arabic characters, either printed or handwritten. 
• Presence of ligatures (see Figure 4). 

 
The second category (writer dependent) includes the following characteristics: 

• Every writer has an individual writing style. 
• The condition and state of the writer during writing significantly influences 

handwriting process. 
 

The third category includes the following: 

• Ascender and descender of consecutive lines frequently connects. 
• Text often is not uniformly spaced. 
• Lines may not be straight. 
• Handwriting may include interferences 
• Characters may touch and there may be broken (sub)words. 
• Ink can fade and seep. 
• The scanning process can introduce noise from the scanner bed page borders. 

 

Given the complexity, anomalies, and inherent specificities of the Arabic handwrit-
ing, approaches and techniques used in other language contexts cannot apply directly to 
the context of Arabic. These difficulties make Arabic word decomposition (segmenta-
tion) in to letters very delicate and not always ensured. So, using the approach of seg-
mentation of words into letters first, followed by recognition of the resulting characters 
afterwards, does not operate well for Arabic handwritten text. Consequently, many issues 
in Arabic handwriting still constitute important questions concerning: 

 
- Segmentation: Is it mandatory? Which is more productive, to place research efforts 

on trying to search for novel, more sophisticated, and effective segmentation algo-
rithms of Arabic handwritten characters or to bypass the segmentation process radi-
cally (e.g., segmentation-free)? 

 
- Recognition Paradigms: Which is the appropriate approach to use for Arabic 

handwriting? Holistic word-based approach? Local letter-based approach (or ana-
lytical)? Or hybrid approach? 
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- Recognition Techniques: Which is the most appropriate technique: algorithm-
based? Neural network-based? SVM-based? HMM-based?  Symbolic-based? Expert 
System-based? Fuzzy-based? Possibility-based? Evidence-based? Rough set-based? 
Syntactic-based? Structural-based? Statistical-based? Hybrid-based? 

 

Fig. 2. Some available Arabic calligraphic styles 

 
- Post-processing: Is it more interesting to retain it as an independent stage, or to 

integrate it in the recognition method. What kind of knowledge is important and how 
and where it is more appropriate to incorporate? 

- Architecture: This concerns the handwritten OCR system: Do we need to devise 
novel architectures or should we reuse and adapt, or extend traditional ones devel-
oped for other scripts or for printed Arabic scripts? Which scripts and languages 
with similarities to Arabic scripts and languages have accurate handwritten OCR 
systems?  

- Hardware/Software Implementation: Is it more appropriate to implement the 
recognition system in terms of software or of a hardware chip? What is the appropri-
ate technology? In both cases, can a compromise be found, that accounts for the en-
vironment in which the OCR systems will be deployed and integrated? Is a parallel 
implementation possible and feasible?  
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Such questions need in-depth research efforts to provide answers that influence and 
guide the selection, conception, design, and development of a cost-effective general 
purpose Arabic handwriting OCR system that satisfies the needs and requirements of 
users for a large application domain.  

However, it seems that, in real world problems, the solution is application-dependent 
and no unique standard solution exists. All OCR research studies incorporate a manda-
tory pre-processing and low level segmentation of images to prepare them for segmenta-
tion and recognition.  

 

Fig. 3. A sample of highly degraded historical documents 

 

Fig. 4. Baseline, overlap, and ligatures in Arabic 
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3   Morphological Analysis, Natural Language Processing and Post 
-Processing 

Traditionally, the bulk of the post-processing stage is dedicated to error handling. In this 
section, we will investigate the contributions and the link of both Morphological Analysis 
and Natural Language Processing (NLP) to post-processing, and we will try to place 
them appropriately in an Arabic recognition system. 

Arabic is a highly inflected language1. Some errors passed in the recognition process 
could be corrected using a post-processing morphological analysis. Most Arabic words 
are derived morphologically from a list of roots. The root is the bare verb form; in most, 
its shape can be trilateral or quadrilateral. Most of these roots comprised of three conso-
nants. In Arabic, patterns work as templates, adhering to well-known rules that generate 
nouns and verbs. Significant work has been done in the Arabic morphological analysis 
[5]. However, the question still remains as to where in the recognition model would be 
the appropriate place to use morphology. Morphological analysis could integrate within 
the recognition method and used effectively to fix lexical errors. It can apply also in post-
processing as in traditional recognition approaches. Taking into account the size of the 
vocabulary, no standard solution will occur for Arabic. Thus, in connection with Arabic 
handwriting recognition, many questions need answers: Do we need a morphological 
analyser?  A stemmer?  Or both?  

More questions exist regarding the problem of morphological analysis, for example: 
which approach should implement the morphological analyser? Symbolic-based (rule-
based)? Statistical-based? Or a hybrid approach (rules in conjunction with statistics)? 

Which approach provides the best connection with Arabic OCR, root-based? Stem-
based? Which technique is the most adequate for Arabic OCR, Automata theory? Exact 
or approximate matching algorithms? And if we opt for a stemmer, which stemming 
algorithm is the most appropriate to suit the needs of Arabic OCR? n-grams based? light 
stemming? 

Another possible solution, natural language processing (NLP) could effectively con-
tribute to handling error correction at the Arabic phrase level. Syntax analysis, semantic 
analysis, and even pragmatic analysis could implement a high-level error handling for 
errors not caught during recognition. This application would work best in the post-
processing stage. Integrating NLP within the recognition module will burden the speed of 
recognition and hence is not an optimal choice. Too many questions still need addressing, 
such as: which formalism works best to capture, represent, and handle Arabic language 
constructs and structures? Conceptual graphs? Semantic networks? Or definite clauses 
grammars (DCG)? Or another formalism? 

Contextual information brings valuable information because it is application-dependent 
and could be implemented within the pragmatic analyser that to handle the word level and 
phrase level issues.  

To summarize, any solution (morphological analyser, stemmer, NLP, contextual in-
formation) should account for both the specificity of the Arabic language, as well as the 
needs and requirements of Arabic handwriting OCR systems. 

                                                           
1 The class of languages that append inflectional morphemes to words are called inflectional. 
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4   Lexicon Generation 

An Arabic lexicon constitutes the heart of Arabic processing systems for specific applica-
tions. Accurate words with grammatical and semantic attributes are essential and highly 
desirable for OCR systems, as well as for machine translation, text understanding, text 
summarization, text generation, information retrieval, information extraction, tagging and 
text mining, etc.  

Some questions consider the Lexicon Generation:  do we really need a lexicon for 
recognition purposes? If yes, what are the pertinent attributes to include in connection 
with Arabic handwriting recognition? How do we build a high quality of lexicon tailored 
to satisfy the requirement of Arabic OCR? A lexicon may be constructed either manually 
or automatically. However, manual construction is labor-intensive, time-consuming, and 
costly. The lexicon size could influence the choice of the recognition paradigm [2].  

We propose to generate automatically the Arabic dictionary from an input document-
making software, using some Arabic equivalent of the WordNet software, or a computer 
readable dictionary. However, a semi-automatic approach might constitute a promising 
solution for the Arabic language.  

5   Case Study: Multi-level Arabic Handwritten Word Recognition  

To highlight some of the above challenging issues related to Arabic handwriting recogni-
tion, we present a case study: Recognition of Tunisian City names, developed by Miled 
[6-8] during his doctoral research. This application was developed as feasibility study for 
postal mail automation in Tunisia. We present a strategy for Arabic word recognition by 
combining three perceptive levels, based on global, analytical and pseudo-analytical 
approaches, according to the topological properties of Arabic handwriting. In the first 
level (global), we consider visual indices, which can be generated by diacritics and 
strokes (tracings) that form the main shapes of the word. Each word is described as a 
sequence of visual indices, processed by a “global” classifier based on hidden Markov 
models (HMM). In the second level, the word segments into graphemes, then each 
grapheme transforms into a discrete observation by a vector quantization process. An 
analytical HMM is developed to manage the observation sequences. At this level, the 
diacritics are not considered, which allows for a reduction in the number of estimated 
character models. The third level, an intermediate level, relies on the notion of Pseudo-
Words or PAWs. It is modeled by HMMs, taking into account the transition probability 
inter-PAWS. Finally, we combine the three approaches to determine the class of an un-
known word. In fact, the global model serves as a filter for the others.  

Figure 5 depicts the basic idea of our strategy of the multi-level Arabic handwritten 
word recognition strategy, exampled (a), as well as the visual perception concept leading 
to our strategy as shown in (b). 

These three levels will create a multi-level Arabic handwritten word recognition strat-
egy. They will be described in detail in the following subsections, followed by our deci-
sion strategy and results. 
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2nd Level : 
Analytical

Logical Concept

1st Level :  
Global 

Diacritics
Tracing

Shape

Grapheme
Observation

Characters

Word

Physical concept

e
c
o
m
p
o
s

e
c
o
n
s
t
i

3rd Level : 
Pseudo-
Analytical

Vectorial Rep. 
Visual Indices

(a)

(b)

         Shape to be recognized 

Word 

Characters 

Pseudo-words

Pseudo-words

 

Fig. 5. Multi-level Arabic handwritten word recognition strategy: (a) The three levels; (b) 
Perceptual concept using top-down and Bottom-up analysis 

5.1   1st Perceptive Level: Global 

This approach has the goal of describing the word as a global entity by a sequence of 
visual indices. So, first we detect the information zones in the word. This phase is 
achieved by the extraction of the image’s external contours. These components represent 
two types of image information: tracings (strokes) and diacritics, as in Figure 6. 
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(a)

 (a) 

(b)      (c)  

Fig. 6. Detection and separation of information zones of the image: (a) word image; (b) diacrit-
ics; (c) baseline and middle zone characters 

 

The global level includes visual indices extraction, followed by Global Markovian 
Modeling. 

(i)  Visual Indices Extraction 

We define a set of visual indices extracted from the tracing zone and the diacritics. The 
tracing zone contains the majority of the image information (word). The visual indices 
from this zone have two types, regularities and singularities [10]. The first type can group 
indices extracted from the middle zone: (Figure 7) loops, valleys and inter-tracing spac-
ing (noted by “#”); the second includes the prominent features: alefs, ascenders, descend-
ers and tanks [7-9].  

(a) 

(b)

#

valley

Prominent Zone 

Prominent Zone 

Middle Zone 

descender

Tank

ascender

 

Fig. 7. Some of the Visual Indices extracted from the tracing: (a) middle zone features (left) 
and ascenders and descenders (right); (b) some prominent features of the word on the left 
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(ii)   Global Markovian Modeling 

For Global Markovian Modeling, the visual indices described above represent the set of 
features used in word descriptions. The words are represented by a chronological obser-

vation sequence T
1y  (visual indices, Figure 8.). The description direction follows the 

classical Arabic reading/writing direction, from right to left. The management of this 
observation sequence is based on Hidden Markov Models (HMMs). 

HMMs are soft elastic models widely used in speech and handwriting recognition. 
This modeling tolerates variability in the writing and adapts perfectly to our type of data. 
The only problem rests in the relatively large lexicon (232 classes of words), and the few 
samples for each word class. 

… Ta/As/#/Ds/Ud/V/Ud/V/L

*

 

Fig. 8. Representation of the word in Figure 6. (a) as a sequence of visual indices. As: ascender; 
Ds: descender; Ud: upper-dot ; L : loop ; V : valley ; Ta : tank ; #: inter-trace  spacing. 

 

In this paper, the “global” HMM, i.e. an HMM for every word class iω , is noted as 

),B,A( iii
G
i Πλ = . The models have classical right to left topologies, and they are tra- 

ined by the Baum-Welch algorithm. At this level, we attempt to build a pre-classification 
module. The global HMM is trained according to the ML criterion, and called the global 

classifier. For each model G
iλ of word class iω , it computes the associated probability 

)/y(P G
i

T
1 λ . The decision rule follows (1): 

1arg m ax ( ( / ))
i

T
k iP y

 
(1) 

Table 2 presents the performance of the global classifier, trained on 4,720 words 
and tested on 5,900 other words, the lexicon size N = 232 Tunisian city names. 

We note the weakness of the recognition rate ( recoτ ) in the top 1. This classifier filters 
to reduce the lexicon size. It selects a set of the most probable word classes, noted by 

GΩ  , 
 

Table 2. Performance of the global classifier 

Ranks top1 top2 top5 top10 

recoτ  58,9% 68,3% 78,2% 86,8% 
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5.2   2nd Perceptive Level: Analytical 

In this section, we present the 2nd perceptual level: an analytical method that is the seg-
mentation of the word tracing to small chunks, known as graphemes, followed by the 
description of a method called Analytical Markovian modeling. 

In cursive Arabic handwriting, a tracing represents a set of characters, or portions of a 
character (graphemes), attached with links. To describe a word as a sequence of features, 
we developed a segmentation module to cut strokes into graphemes at this level.      

Analytical Markovian Modeling 

At this level, each grapheme is represented by a vector of the different measurements, 
which is used by the classifier to compare an unknown grapheme to known-ones. The 
decision of the observation given to each grapheme happens with a k-nearest neighbors 
classifier (k-NN).  

The main subject of modeling is the character component.  The modeling process is 
directly link to the segmentation phase, and does not depend on the character as a logical 
entity but on its shape. Based on this segmentation, we moved from a model per charac-
ter to a model per family of characters (characters which have the same main body), 
which reduces the number of models from 30 to 18. The character model is a right-left 3 
states model, and considers all possible segments of a character. The states of this model 
are called μ-states. The transition probabilities between the different states are estimated 
on the entire database.  

The final model fuses the models defined earlier. Its states combine of the μ-states 
(from character models), encountered while tagging the training set.  The associated 
classifier, for the second level, is also an ML, based on these HMMs for analytical word 

modeling. This classifier computes, for each model 
A
iλ  of the class iω  (with Gi Ωω ∈ ), 

the associated probability )/y(P A
i

T
1 λ . The decision rule is as follows (2): 

 
  
 
Below, we represent words for different experiments using two sets of alphabets, 

perceptive and fine, and we include some experimental results. 
 
(i)  Perceptive Alphabet 
Once perceptual features extracted as visual indices clustering is performed on the 
perceptual alphabet, leading to 18 grapheme classes are labeled from A to R : 

 
1. A: alef shown in Figure 9; 

2. B - D: graphemes with ascenders 

3. E – H : graphemes with both ascenders and descenders  

4. I – M : graphemes with descenders 

5. N – R : graphemes within the middle zone 

1arg m ax( ( / ))
i

T
k iP y

λ
λ λ= (2) 
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Fig. 9. An example of a perceptual features 

(ii)  Fine Alphabet 

For the fine alphabet, the word image segments to have fine and accurate character 
shapes, according to the following steps (Figure 10): 

The word image ⇒ upper contours extraction ⇒ filtering ⇒ detection of the Pri-
mary Segmentation Points (PSPs) ⇒ Selection of the Decisive Segmentation Points 
(DSPs) ⇒ segmentation of the word. 

(a)(b) 

(c) 
(d)  

Fig. 10. Sequence of the segmentation process. (a) Original image (b) Primary segmentation 
points (c) Secondary segmentation points. (d) Segmentation of the word to its fundamental 
PAWs.  

Graphemes Quantization (Statistical features) 

At this stage of word preprocessing, graphemes quantization can be defined as: 
 

• Description of each grapheme by a vector of 19 components : 
- 9 structural primitives  
- The first 10 Fourier descriptors  

• grapheme labeling  supervised 
• infrequent grapheme classes are eliminated  
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Experimental Results 

This section includes the results of two experiments concerning the segmentation of 
words using perceptive versus fine alphabets, looking to associate graphemes with char-
acters. For each experiment, the training set consists of 4,720 words, and the testing  
set consists of 5,900 words. The following tables summarize the results for each experi-
ment: 

Table 3. 1st Experiment: Perceptive alphabet (18 graphemes) 

Ranks Top1 Top2 Top3 Top5 Top10 

Recognition 
rate 

69.68% 79.29% 83.53% 87.56% 91.66% 

Table 4. 2nd Experiment: Fine Alphabet 

              1- Graphemes selection: entropy criterion (50 graphemes) 

 

Ranks Top1 Top2 Top3 Top5 Top10 
Recognition rate 79.54% 86.90% 89.58% 92.24% 94.75% 

 
2- Grapheme selection: Modified K-means (50 graphemes) 

 
Ranks Top1 Top2 Top3 Top5 Top10 

Recognition rate 81.68% 88.12% 90.46% 92.88% 94.92% 
 

 
The analysis of the main recognition errors (confusions) shows that: word classes with 

the same handwritten main shapes that can be distinguished by diacritics are the principal 
cause of confusions. The experimental results show that the fine alphabet outperforms the 
visual one. 

5.3   3rd Perceptive Level: Pseudo-Analytical 

As mentioned earlier, the word is a sequence of pseudo-words, to which we apply the 
multi-level recognition model to extract the specific characteristics of Arabic handwriting.  

A pseudo-word is a sequence of characters. The pseudo-word for a PAW model can 
be viewed as a concatenation of the character models composing the word (see Figure 
10). The segmentation phase depends essentially on the set of bi-grams. The segmenta-
tion engine behaves in the same way each time it encounters the same bi-gram in a 
pseudo-word. The parameter of interest is the probability of segmentation by bi-grams. 
These probabilities can be computed over the entire database. 
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(a)

(b)  

Fig. 11. Pseudo-Words or PAWs modelling. (a) the shape in the left is a common PAW (with-
out diacritics) for three different words (on the right). (b) HMM modelling of PAWs. 

Experimental Results 

This section includes the results of three experiments concerning the segmentation of 
words using the pseudo-word or PAW concept. For each experiment, the training set 
consists of 4,720 words, and the testing set consists of 5,900 words. The following 
tables summarize the results for each experiment: 

1st  Experiment  

Figure 12 shows the experimental results on the same sets of data as above, with a 
superiority of using strategy (A): the modeling of PAWs compared to the strategy in 
(B) the global modeling.  

60%

65%

70%

75%

80%

85%

90%

95%

top1 top2 top3 top4 top5

R
ec

og
ni

ti
on

 ra
te

(A)

(B)

 

Fig. 12. Performance Comparison on the test set between the Global and Pseudo-Analytical 
modeling: (A) Pseudo-analytical (B) Global 

 
 
The following tables summarize the experimental results using different alphabets 

(perceptive and fine) for sub-word or PAW representation. 
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Table 5. 2nd Experiment:  Perceptive alphabet 

1- Graphemes selection: Entropy Criterion (50 graphemes) 
 

Ranks Top1 Top2 Top3 Top5 Top10 
Recognition rates 69.3% 79.6% 85.3% 90.1% 94.7% 

 
2- Modified K-means: unsupervised (50 graphemes)  

Ranks Top1 Top2 Top3 Top5 Top10 
Recognition rates 70.8% 79.9% 84.4% 89.5% 93.5% 

 

Table 6. 3rd Experiment: Fine Alphabet (50 graphemes) 

Ranks Top1 Top2 Top3 Top5 Top10 
Recognition rates 72.5% 83.0% 87.4% 92.1% 95.8% 

 
The analysis of the main recognition errors shows that: word classes with the same 

handwritten main shapes that can be distinguished by diacritics are the principal cause of 
confusion. The experimental results show that the fine alphabet outperforms the visual 
one as in analytical modeling. 

5.4   Decision Strategy and Results 

The strategy of recognition of the unknown word has three levels (see Figure 13). Each 
level is a Maximum Likelihood (ML) classifier, and takes the unknown pattern (noted by 

x below) as a sequence of observations )y,...,y,y(y T21
T
1 = , presenting visual indices 

in one level and graphemes in the other.   

GS

unknown pattern x

Lexicon Reduction 

Global Level 

Analytical Level 

proposed word y  

Fig. 13. Combination of the two level classifiers: x is the unknown word and y is the decision 

Below, we summarize the performances of individual classifiers and as a combina-
tion of 2 by 2 classifiers: 
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Table 7. Summary of each perceptual classifier’s performance 

 top 1 top 5 

recoτ _Global      9 VI 58,9% 78,2% 

recoτ _Analytical     23 shapes 72,5% 92,0% 

recoτ _PseudoAnalytical    23 shapes 81,8% 90,5% 

Table 8. 2-2 Classifiers’ Combination: Performance 

(a) Pseudo-Analytical with Analytical Modeling 
 

 
 
 

 
(b) Global with Analytical Modeling 

 
 
 
 

 
We use two methods of combination: 
In the first method, we considered the two levels of the system as independent. The 

first level filters the word classes to obtain a set of candidates for the second level, with-
out any other information. The word is assigned to the class kω )y( kω= , for which the 

model A
kλ  maximizes the emission probability of T

1y  by the second level (the analytical 

classifier), as follows (3):  
 

   model     )/(maxarg  i1 G
A
i

A
i

TA
k ssof the clawithyP

A
i

Ω∈= ωλλλ
λ

 

The second method employs the stochastically independent assumption of the classifi-
ers, as in Figure 13. The global classifier gives a set of candidates with their maximum 

likelihoods. A score comb
iS  assigns to each candidate Gi Ωω ∈ , and this score is equal 

to ).,/( 1
A
i

G
i

TyP λλ  Using the classifiers’ independence assumption, we can simplify the 

computation of the score of each candidate (4):  
 

comb
iS )/y(P)./y(P A

i
T
1

G
i

T
1 λλ≈  

 
Finally, the word is assigned to the class kω  )y( kω= , which  maximizes the score 

after the combination of two classifiers (5): 
 

 top1 top5 
Pseudo-Analytical 72.5% 92.0% 

Analytical 81.8% 90.5% 
Product of measures 86.4% 94.4% 

 

 top1 top5 
Global  58.9% 78.2% 

Analytical 81.8% 90.5% 
Product of measures 87.2% 95.5% 

 

  (3) 

  (4) 
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comb comb
i i iarg max       

i
k S with S of  the class ω=  

 

The performances of the first combination method are optimum (85% in top 1) for a 
size of GΩ , GN = 40, and they decrease for higher values of GN . However, the per-

formances of the second combination method are optimal (87% in top 1) for a value of 

GN  superior to 100 filtered candidates, and they remain relatively constant for higher 

values of GN .  

Although the results need to be refreshed on the IFN database [4], the proposed ap-
proach stresses the complementary role that classifiers play in perceptual level modeling, 
especially if they are empowered with recent advanced performing methods such as: NN-
HMMs, Kernel-based methods (SVMs), and Generative/Discriminative Hybrids. Fur-
thermore, and following the outline of this paper, linguistic information and knowledge 
domains might be exploited and further incorporated into the recognition engine. For 
instance, this information can use the a priori probability of city names: a higher prob-
ability exists that “Tunis” will occur more frequently than a smaller city name. From this 
case study, one may possess good clues to tackle other Arabic texts and handwritings. 

6   Concluding Remarks 

We have addressed the major problems and raised issues that constitute challenges for 
the effective conception, design and development of Arabic handwritten OCR systems. 
This study has allowed us to determine, capture, and define “good” functional and non-
functional requirements to engineer, in order to build a coherent and versatile implemen-
tation of an operational high-adaptability and high-accuracy Arabic Handwritten OCR 
system. If we develop a viable and generic solution, it will be a building block toward 
developing operational multilingual OCR systems. In addition to further analysis and 
understanding of the recognition of Arabic handwriting problems, we will consider a 
compromised solution with design trade-offs and consideration for due specificity of 
Arabic scripts and language and increased OCR performance, accuracy, robustness, and 
adaptability. 

The basics of computational linguistics presents an open problem that could benefit 
accuracy and adaptability without affecting the efficiency of recognition. We believe 
Arabic computational linguistics will effectively address these challenges. Computational 
linguistics are crucial to the success of intelligent OCR systems.  

Our other purpose was to present the effect of perceptual analysis on designing classi-
fiers and combines them to increase the overall system performance. Visual processing of 
handwriting will bring greater improvement to this technology, given prior knowledge 
and knowledge domains. In general, we believe that software architecture of an OCR 
system, either for printed text or handwritten Arabic or not holds, paramount importance. 
In particular, we plan to investigate the applicability of soft computing to Arabic hand-
written recognition, [2, 25-28]. We propose to explore the possible joint contribution of 
Arabic computational linguistics, Arabic NLP, and granular soft computing in building 
novel architectures for Arabic handwritten recognition.  Cursive Latin handwriting might 
also be handled in a similar manner, thus, opening the opportunity for multi-lingual OCR 

(5) 
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using the same framework. Such hybridization becomes crucial to the success of OCR 
systems and definitely opens an interesting and highly promising research area. 

 

Acknowledgments. This paper relates to our recently published works [1,2],  
and more importantly, we are indebted to the team involved, especially for works in 
[2, 7-9]. 

References 

1. Cheriet, M.: Strategies for Visual Arabic Handwriting Recognition. Issues and Case Study. 
In: IEEE Int. Conference on Signal Processing and Applications, Sharjah (UAE) (2007) 
(invited paper) 

2. Cheriet, M., Beldjehem, M.: Visual Processing of Arabic Handwriting: Challenges and 
New Directions. In: Summit on Arabic and Chinese Handwriting (SACH 2006), Washing-
ton-DC, pp. 129–136 (2006) (invited paper)  

3. Belaid, A., Choisy, C.: Human Reading Based Strategies Off-line Arabic Word Recogni-
tion. In: Summit on Arabic and Chinese Handwriting (SACH 2006), Washington-DC, 
USA, pp. 137–144 (2006) (invited paper) 

4. Magner, V., El Abed, H.: Databases and Competitions – Strategies to improve Arabic 
Recognition Systems. In: Summit on Arabic and Chinese Handwriting (SACH 2006), 
Washington-DC, pp. 145–153 (2006) (invited paper) 

5. Al-Ohali, Y., Cheriet, M., Suen, C.Y.: Databases for Recognition of Handwritten Arabic 
cheques. Journal of Pattern Recognition 36, 111–121 (2003) 

6. Al-Sughaiyer, I.A., Al-Kharashi, I.A.: Arabic Morphological Analysis Techniques. Journal 
of the American Society for Inf. Sc. and Tech. 55(3), 189–213 (2004) 

7. Miled, H.: Stratégies de résolution en reconnaissance de l’écriture semi-cursive: Applica-
tion aux mots manuscrits arabes. PhD thesis, PSI-La3i UnivRouen, LIVIA ETS, Montreal 
(1998) 

8. Miled, M., Olivier, C., Cheriet, M., Lecourtier, Y.: Coupling observation/letter for a Mark-
ovian modeling applied to the recognition of Arabic handwriting. In: Proc. ICDAR, Ulm, 
Germany, pp. 580–583 (1997) 

9. Miled, H., Cheriet, M., Olivier, C.: Multi-level Arabic Handwritten Words Recognition. 
In: Proc. SSPR/SPR, pp. 944–951 (1998) 

10. JSimon, J.C., Baret, O.: Handwriting recognition as an application of regularities and sin-
gularities in line pictures. In: Proc. of IWFHR, Montreal, pp. 23–36 (1990) 

11. Hani, A., et al.: Deterministic and nondeterministic flow-chart interpretations. 
JASIS 50(6), 524–529 (1999) 

12. Adnan, A., et al.: Handwritten Arabic Character recognition by the IRAC system. In: Proc. 
Int. Conf. on Pattern Recognition, Miami, pp. 729–731 (1980) 

13. Adnan, A., et al.: Recognition of Handwritten Arabic Scripts and Sentences. In: Proc. 
ICPR, Montreal, (2), pp. 1055–1057 (1984) 

14. Al-Badr, B., Mahmoud, S.: Survey and bibliography of Arabic Optical text recognition. 
Signal Processing 41, 49–77 (1995) 

15. Al-Emami, S., Usher, M.: On-line recognition of handwritten Arabic characters. IEEE 
Trans. PAMI 12(7), 704–710 (1990) 

16. Almuallim, H., Yamaguchi, S.: A method for recognition of Arabic cursive handwriting. 
IEEE Trans. PAMI 9(5), 715–722 (1987) 



 Visual Recognition of Arabic Handwriting: Challenges and New Directions 21 

17. Souici-Meslati, L.L., Sellami, M.: A Hybrid Neuro-Symbolic Approach for Arabic Hand-
written Word Recognition. JACII 10(1), 17–25 (2006) 

18. Souici-Meslati, L., Farah, N., Sari, T., Sellami, M.: Rule Based Neural Networks Con-
struction for Handwritten Arabic City-Names Recognition. In: Bussler, C.J., Fensel, D. 
(eds.) AIMSA 2004. LNCS (LNAI), vol. 3192, pp. 331–340. Springer, Heidelberg (2004) 

19. Al-sheikh, T.S., El-Taweel, T.S., S.G.: Real-time Arabic handwritten character recogni-
tion. Journal of Pattern Recognition 23(12), 1323–1332 (1990) 

20. Abuhaiba, S.I., Ahmed, P.: Restoration of temporal information in off-line Arabic hand-
writing. Journal of Pattern Recognition 26(7), 1009–1017 (1993) 

21. Abuhaiba, I.S.I., Mahmoud, S.A., Green, R.J.: Recognition of Handwritten Cursive Arabic 
Characters. IEEE Trans. PAMI 16(6), 664–672 (1994) 

22. Mahmoud, S.A., Abuhaiba, S.I., Green, R.J.: Skeletonization of Arabic characters using 
clustering based skeletonization algorithm (CBSA). Journal of Pattern Recognition 24(5), 
453–464 (1991) 

23. Pechwitz, M., Snoussi-Maddouri, S., Margner, V., Ellouze, N., Amiri, H.: IFN/ENIT data-
base of handwritten Arabic words. In: Proc. Colloque Francophone International sur l’Écrit 
et le Document, Hammamet, pp. 129–136 (2002) 

24. Hull, J.J.: A Database for handwritten text recognition research. IEEE Trans. PAMI 16, 
550–554 (1994) 

25. Zadeh, L.A.: The Roles of Fuzzy Logic and Soft Computing in the Conception, Design, 
and Development of Intelligent Systems. In: Nwana, H.S., Azarmi, N. (eds.) Software 
Agents and Soft Computing: Towards Enhancing Machine Intelligence. LNCS, vol. 1198, 
pp. 183–190. Springer, Heidelberg (1997) 

26. Zadeh, L.A.: Soft Computing, Fuzzy Logic and Recognition Technology. In: Proc. IEEE 
Int. Conf. Fuzzy Systems, Anchorage, AK, pp. 1678–1679 (1998) 

27. Zadeh, L.A.: Some Reflections on Soft Computing, Granular Computing and their Roles in 
the Conception, Design and Utilization of Information/Intelligent Systems. Soft Comput-
ing 2, 23–25 (1998) 

28. Beldjehem, M., Cheriet, M.: Validation and Verification of Hybrid Min-Max Fuzzy Sys-
tems. In: Proc. North American Fuzzy Information Processing (NAFIPS 2006), Montreal, 
Canada (2006) 



A Review on Persian Script and Recognition

Techniques

Sara Izadi, Javad Sadri, Farshid Solimanpour, and Ching Y. Suen

Center for Pattern Recognition and Machine Intelligence (CENPARMI)
1455 de Maisonneuve Blvd. West, Suite EV003.403

Montreal, Quebec, Canada, H3G 1M8
{s izadin,j sadri,f solima,suen}@cs.concordia.ca

Abstract. This paper presents the history of the Persian (Farsi) script,
as well as the development of different writing styles for the current Per-
sian script. It also addresses the Arabic alphabet adopted and evolved for
writing the Persian language as well as different writing styles. This evolu-
tion includes further extensions to the Arabic alphabet and altered shapes
of some Arabic letters. The differences between current Arabic and Per-
sian handwritings for automated recognition purposes are discussed. A
short review on techniques in Persian script recognition is presented, and
the shortcomings and challenges in this area are highlighted.

1 Introduction

The current Persian script, also known as Perso-Arabic script, is an impor-
tant variant form of the Arabic alphabet. Persian and its dialects have official
language status in Iran, Afghanistan, and Tajikistan. Persian is also spoken
by minorities in Uzbekistan, Turkmenistan, Azerbaijan, Armenia, Georgia, and
Southern Russia. Although commonly thought as Persian and Arabic sharing
the same alphabet and writing styles, minor yet important differences in their
alphabets and their styles of writing differentiate these two scripts. While the ne-
cessity exists of having automated script recognition-related applications to serve
a large population, this domain has not attracted much attention internationally,
remaining the focus of mostly Iranian journals and conferences. Therefore, this
paper aims at providing more information about this area of research.

This paper is organized as follows: Section 2 briefly reviews the Persian script
history and how the Arabic alphabet replaced the previous Persian alphabet.
The creation and the evolution of different writing styles for Arabic and its
variants, as well as the relation between those writing styles and the current
Persian and Arabic, are given in Section 3. The Persian script had, in turn,
branched into other scripts in the neighboring regions, as discussed in Section 4.
Characteristics shared among Arabic and other scripts that adopted Arabic are
explained in Section 5. More detailed features of the Persian alphabet, digits, and
handwriting styles are provided in Section 6. Sections 7-9 review some existing
Persian script recognition methods. Finally, Section 10 highlights the challenges
with concluding remarks.

D.S. Doermann and S. Jaeger (Eds.): SACH 2006, LNCS 4768, pp. 22–35, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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2 Persian Script Evolution

The Arabic script has been adopted widely for use in many languages including
Persian. This section reviews the history of Persian script before and after its
adoption of the Arabic alphabet. Throughout three prominent periods, the Per-
sian alphabet evolved [1]. These periods and the transition from one period to
another are discussed in this section.

Ancient Persian script was a semi-alphabetic cuneiform script written from
left to right. Old Persian script was invented around 525 BC, and consisted of
three vowel signs, 33 consonant signs, eight logograms1, a sign to mark the end
of words (word separator), and numeral signs. The consonant signs are syllabic,
i.e., they denote a consonant plus a vowel. Figure 1(a) shows some of those
signs.

Transformation of the Persian language from the synthetic form of the Old
Period to an analytic form of Middle Persian occurred in the third century
B.C. Middle Persian or Pahlavi is known mainly from the official inscriptions of
the “Sasanian” Empires and Zoroastrian literature. Pahlavi was a complicated
writing system read from right to left in horizontal lines. Often, letters formed
complicated ligatures. The Pahlavi alphabet and some ligatures are shown in
Figure 1(b). In Pahlavi, vowels had multiple pronunciations, and only some
vowels were indicated in writing. This explains Pahlavi’s complications, despite
attempts at improvement made in its later forms.

(a) (b)

Fig. 1. (a) Some symbols of Old Persian script alphabet, (b) Middle Persian alphabet
and ligatures

The third period began with the Sassanian dynasty’s fall to Arabs in the
seventh century. For the next 300 years, Pahlavi script was actively used. Pahlavi
was eventually replaced by an alphabet derived from Arabic partially because
of the difficulty in reading and writing Pahlavi. The modern Persian alphabet,
in use today, is a variation of the Arabic alphabet.

1 Ideograms or logograms are signs that represent a whole word.
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3 Development of a Writing System for Modern Persian

While variability of writing styles presents as a major challenge for handwriting
recognition systems of all scripts, it holds greater importance for Arabic and its
variant forms: as shapes of the letters, proportion of their constructing parts, and
their connectivity to other letters can vary. Considering that measurements of
geometrical characteristics of handwriting samples, such as curviness or propor-
tions, provide guidance for segmentation or classification in many methodologies,
styles can have a large impact on the recognition system functionality.

The styles of Arabic and Persian writing have undergone many changes. The
writing styles for the Arabic script in the seventh century were limited to two
styles. The first standardization of writing styles occurred in the tenth century.
At the same time, six major writing styles were developed that became the basis
for developing other writing styles. During this time, more writing styles evolved,
and particular writing styles had general appeal for writing Persian and Arabic.
A quick review can shed light on why some Persian and Arabic characters do
not appear the same, and some connections of the letters of words also differ in
today’s normal handwriting.

At the start of the Islamic era, people used two types of Arabic scripts: A
rounded script called “Naskh”, considered unsophisticated, was used for quick
writing and secular purposes. The other, a square and angular script called
“Kufic” was used to inscribe and copy the Koran. After adopting the Arabic al-
phabet for Modern Persian writing, Iranian calligraphists, skilled in the rounded
Pahlavi script calligraphy, soon set themselves the task of beautifying the new
script.

The most outstanding calligraphist of the tenth century (Ibn Muqla, tenth
century) distinguished the need for rules of proportion common to any given
letter in any script, and systematized the writing of the proliferating variants
of cursive Arabic calligraphy. Letters were given precise measurements for their
vertical, horizontal, and curved strokes. It is the proto-style for most of today’s
styles [2]. This system uses the dot as a measuring unit for line proportions, and
a circle, with a diameter equal to the Alef’s2 height, as a measuring unit for
letter proportions as seen in Figure 2(a).

From the tenth century, calligraphers abandoned the primitive and defective
Kufic style, while the Naskh style improved and became one of the legible “six
cursive styles”3 pioneered by IbnMuqla [3]. The famous “six styles” became
stable styles in which the height of the alef varied from three to twelve dots4.
Naskh reached the height of its development in the 12th century and became the
style for text, Korans, and ordinary Arabic correspondence. Riq’a, a later style,
is popular today for everyday writing in Arabic. Constructed from short strokes
and subtle pen motions, Riq’a is easier to write than others styles [8]. The Ta’liq

2 Alef, a straight vertical stroke, is the first letter of the Persian and Arabic alphabets.
3 The six cursive scripts are: Thuluth, Naskh, Muhaqqaq, Rihani, Riq’a, and Tawqi.
4 For example, the Alef is five dots high in Naskh. In Thuluth style, the Alef is nine

dots high with a crochet or hook of three dots at the top.
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(a) (b)

Fig. 2. (a) The basic measuring system for Arabic script[4], (b) The letter Ein written
in Nasta’liq style on the left and Naskh style on right. The small circle indicates half-
point.

(a) Persian

(b) Arabic

Fig. 3. Samples of normal handwriting in Modern Persian in Nasta’liq style and Arabic

style designed in the tenth century in Iran, addressed the needs of the Persian
language. The exaggerated round forms and elongated horizontal strokes that
characterized the delicate Ta’liq style were used widely for royal as well as daily
correspondence until the 14th century when Ta’liq was replaced by Nasta’liq.
Nasta’liq was the predominant style of Persian calligraphy during the 15th and
16th centuries. It has short verticals with no serifs and long horizontal strokes.
This unique script must never be written with diacritical vowels [5]. Nasta’liq
style has rarely been used for writing Arabic, but has been extremely popular for
Persian since its development. “Shekasteh Nasta’liq” succeeds Nasta’liq, and is
also currently in use in Iran. Figure 2(b) shows a letter written in Nasta’liq and
Naskh and their corresponding measuring dots written by calligraphic pens. The
differences in the proportions of the letter’s upper curve and the lower curve’s tail
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can be observed. Two samples, written in Persian and Arabic, compare Nasta’liq
and Naskh, shown in Figure 3.

4 Modern Persian Script Propagation

The modern Persian script and its most well-known writing style, Nasta’liq,
have propagated within many languages having added further extensions to the
Persian alphabet. This happened mainly when Persian was the court language of
the Mughal empire during their ruling over the Indian subcontinent (1526-1707).
The Persian script and Nasta’liq writing style propagated what is now known
as Pakistan, India, and Bangladesh, even parts of China, south Asia, and Java.
Versions of Nasta’liq serve as the preferred style for writing Pashto and Urdu,
the official languages of Afghanistan and Pakistan. In Indian cities with large
Urdu-speaking populations, such as Hyderabad and Lakhnaustill, people employ
the Nasta’liq style for writing Urdu language. In Table 1, languages written in
different forms of the Perso-Arabic script are shown. Among these languages, all
the Indian and Turkic ones tended to use the Perso-Arabic script. All of these
scripts have rooted from Arabic, therefore have some characteristics in common
which are discussed in the following section.

Table 1. Languages that adopted the Perso-Arabic script

Persian Azari Uzbek Sindhi Kashmiri

Panjabi Baluchi Brahui Urdu Tajik

Pashto Dari Kirghiz Kurdish Uyghur

5 Arabic Script and Its Variants’ Characteristics

All derived scripts from Arabic are cursive. Therefore, word segmentation is
challenging for them. In Arabic script and its variant forms, several letters share
the same basic form and differ only by a small complementary part (mostly
dots). Letters may take as many as four shapes, depending on their position in
the word and the preceding letter in the word. Some letters connect only to the
previous letter in the word, creating sub-words if they appear in the middle of
the word.

6 Persian Alphabet, Digits, and Writing System

The Persian alphabet has four letters which do not exist in the Arabic alpha-
bet, representing phonemes that Arabic phonology does not have. Some Arabic
vowel signs (sukuun, fatHatain, kasratain, Dammatain, hamzat, madda) do not
occur in Persian. Two letters omit their dots in Persian. Figure 5 shows some
characters, or a combination of character and vowel sign, that never appear
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Fig. 4. Combination of letters and vowel signs that exist in Arabic, but not Persian

Fig. 5. Four different shapes of letters in the Persian alphabet

in Persian. Persian letters and their variant shapes (detached, initial, medial,
and final) appear in Figure 5. This characteristic of Persian and Arabic letters
increases the effective size of the alphabet from 32 letters to 114. Persian nu-
merals form 13 classes, and Arabic handwritten digits normally form 11 classes
[9]. In Nasta’liq style characters rest on an equal line distribution borrowed
from the Naskh and curves borrowed from the Ta’liq. The axis of the letters
is tilted slightly backwards, as Figure 6 shows. In the Nasta’liq, as in other
styles, the letters are proportioned using point-measurement. In Nasta’liq, the
same letter is presented in several forms. Not only according to its place in
the word, as it is the rule with the Arabic alphabet, but also according to aes-
thetic alternatives. The alternatives might be used according to the shapes of the
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Fig. 6. Letter Ein written in Nasta’liq
style [7]

Fig. 7. Combination of two letters
written in Nasta’liq style. The first let-
ter is the same in all five examples.

surrounding letters. The most remarkable alternatives happen when certain let-
ters stretch, in which horizontal features lengthen up to 9 or 11 points [7]. More-
over, the shape of the character, even in the fixed position of the word, may
change with relation to the next characters, as shown in Figure 6 for a two letter
combination. Although the first letter is the same, it does not look the same
when connected to different letters.

7 Offline Persian Recognition

Like other scripts, the architecture of Persian script recognition consists of pre-
processing, segmentation, recognition, and verification modules. Pre-processing
facilitates recognition and may include image processing operations, such as bi-
narization, noise reduction, smoothing, filling, or image transformations such
as normalization. Segmentation tries to find connected or touching digits and
separates them by introducing segmentation paths. For recognition, a classifier
assigns class labels and corresponding confidence values to the segmented dig-
its. Verification is an optional module that approves the decisions made by the
recognizer, and it tries to reduce the error rate.

The research in Persian script recognition began in 1980, when a system for
machine printed Persian text was developed ([11], [12]). This section briefly
reviews some research efforts for offline Persian script recognition.

7.1 Pre-processing and Segmentation

Preprocessing in offline recognition usually includes noise removal, slant/skew
correction, size normalization, and contour or skeleton extraction. For word
recognition, base line extraction is included in the preprocessing stage. A method
for segmentation of handwritten numeral strings in Persian is presented in [10].
Combining foreground and background features and global information from the
string image, this method finds segmentation paths to separate the touched dig-
its. In this method, after extracting the skeleton of each connected component,
the points of minimum and maximum x coordinate are selected as starting and
ending points. The skeleton is then traversed from starting point in clockwise
and counter-clockwise directions until both reach the end point. While travers-
ing, at the visited intersection points (points with more than two connected
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Fig. 8. (a) Original image of touching digits 5 and 6, (b) Pre-processed image , (c)
Skeleton traversals from S to E in clockwise: dashed arrows, and counter-clockwise:
dotted arrows, direction (d) Mapping of intersection points on the outer contour by
bisectors to form foreground-features, (e) Background region, (f) Top/Bottom back-
ground skeletons, (g) Top/Bottom-background-skeletons after removing parts that are
lower/higher than the middle line, (h) Cutting path for separating 5 and 6.

Fig. 9. (a) Original, (b) Structural features shown for the ”skeleton” image extracted
using the algorithm presented in [13]

branches) foreground feature points are located. Foreground feature points are
denoted as the intersection of the bisector of the two branches with the contour
of the connected component. In the next step, the skeleton of the background
(white pixels) of a connected component is found, and all end points in the back-
ground skeleton are extracted (points that have one black neighbor), and they
are denoted as background features. The foreground and background feature
points are assigned alternatively to construct all possible segmentation paths.
The resulting images of those stages are depicted in Figure 7.

8 Feature Extraction

Instead of being handled directly, the samples are usually mapped to the feature
space for a summarized, yet comprehensive representation. In other words, by
feature extraction, we choose sample information and deliver it to the classifier.
Structural features, such as loops, branch-points, endpoints, and dots, are based
on the innate aspects of writing. To compute these features, the skeleton of the
text image should be extracted, as shown in Figure 7. Methods are categorized
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using the feature types: structural features, and statistical features. One reason
that structural features are more common for the recognition of Persian scripts
than Latin scripts is because the primary shapes of many Persian letters are
alike, with only the number and locations of their dots differing. Therefore, to
differentiate such letters, structural features capture dot information explicitly.
Some systems that recognize Persian digits based on structural features are listed
in Table 2. Statistical features are numerical measures, computed over the images
or regions of the images. Some examples of statistical features include pixel
densities, histograms of chain code directions, moments, and Fourier descriptors.
Outer profiles, projection histograms, and crossing counts are employed in [14],
and [17]. Some systems using statistical features appear with a short description
in Table 3.

Table 2. Summary of research that used structural features for Persian script recog-
nition

Research Pre-Processing Classifier(s) Database Recognition Rate
[14] Thinning MLP-NN Private

Persian Digits 94.44%
4800 Samples

10 Classes
[15] Thinning SVM & RBF Kernel Private

Persian Chars 96.92%
3200 Samples

20 Classes

9 Persian Online Recognition

In online handwriting recognition, the process of automatic recognition occurs
while a person writes. Online handwriting recognition systems deal with hand-
writing captured by a digitizer. The electronic tablet is a typical capturing device,
which contains a pointing device (usually a pen) and a sensing device.
Online handwriting recognition can be used with tablet PCs, hand-held comput-
ers, personal digital assistants (PDA’s), smart phones, etc. There is a comprehen-
sive review of digitizing technology in [23]. The movement of the pen is sensed at
equal time or distance intervals. A software application usually records the spatial
position and the indications of pen-up/pen-down switching.

Dynamic or temporal information presents the main difference between the
online and offline data. It addresses the number and order of strokes. A typical
online recognition system consists of the main blocks mentioned in Section 7.
Here, the research in online Persian recognition is explained given this general
pattern recognition system.

Preprocessing in online handwriting recognition usually includes smoothing,
data reduction, normalization and de-hooking. So far, there have been few efforts
in segmentation for online Persian script. By thresholding on a change of the
angle along the trajectory isolated characters were segmented in [24]. A loop
detection method was added in [25] to enhance the result of segmentation.
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Table 3. Summary of research that used statistical features for Persian script recog-
nition

Research Pre-
Processing

Feature(s) Classifier Database Recog. Rate

[16] None Projection His-
togram

SVM Private Polynomial: 99.44%

Outer Profiles RBF & Persian Digits
Crossing Counts Polynomial 9000 Samples RBF: 99.57%
Size Kernels

[17] None Projection His-
togram

SVM &
RBF

CENPARMI

Outer Profiles Kernel Persian Digits 97.32%
Crossing Counts 8000 Samples

[18] Size- Haar wavelet, 3 MLP-NN Private Digits: 92.33%
Normalization resolutions Persian Digits
Thinning except “2”, “0” Characters: 91.81%

3840 Samples
[19] Size & Rota-

tion
Fractal coding: Private Digits: 91.37%

Normalization domain coordinates Persian Digits
brightness offset except “2”, “0” Characters: 87.26%
affine transformation 3840 Samples

[20] Thinning 12-Segment template MLP-NN Private
centered by the Persian Digits 97.6%
control point 730 Samples

[21] Size- Haar wavelet, 3 SVM &
RBF

Private MLP & Characters:
92.33%

Normalization resolutions Persian Digits: MLP & Digits:
91.81%

Thinning Kernel except “2”, “0” SVM & Characters:
93.75%

3840 Samples SVM & Digits:
92.44%

Persian Char-
acters:
6080 Samples

[22] Thinning Coordinate MLP-NN Private 87%, 85%, 83%,
91%

Features Persian Digits when combined
2430 samples

For the recognition of online Persian script, rule-based classifiers and neural
networks (NN) are the mainly used classifiers. A review of these systems is
presented in Sections 9.1 and 9.2.

9.1 Rule-Based Recognition Methods

Rule-based recognition has been used vastly in script recognition applications. A
recognition rate of 99.6% was reported by T. Al-Sheikh, et al. [26] for their pro-
posed hierarchical rule-based method for online isolated Arabic character recog-
nition. The first level of the hierarchy was based on the number of strokes of
the characters, and further division happened by using rule-based classification.
Relying on an error-free segmentation, this method cannot handle noisy data
or writing variations. A hybrid system using geometrical and structural features
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and fuzzy techniques was presented by F.Bouslama, et al. [27]. Alimi, et al. [28]
minimized error in an online recognition system for isolated Arabic characters
in their proposed system. A bank of prototypes was developed for the coded
characters, based on directional codes and positional codes. For the recognition
of a new pattern, the distance between the pattern and prototype was minimized
using dynamic programming. A recognition rate of 96% was reported. Fuzzy set
theory was used for both segmentation and classification in [24]. After segmenta-
tion, each segment was characterized by four features, described by sets of fuzzy
membership functions. A recognition rate of 95% was reported for the isolated
characters and some character combinations. In [25], a recognition rate of 75%
for the database in [29] was achieved for isolated characters by using fuzzy logic
recognition.

Although rule-based classification has succeeded for small numbers of classes,
choosing the values of the model parameters for a large number of classes
is a challenging task. As the size of symbols grows, correspondingly more
rules will be needed, hence the inference slows and does not suit real time
applications.

9.2 Neural Network-Based Recognition Methods

Neural networks (NN) can learn complex nonlinear input-output relationships,
use sequential training procedures, and adapt themselves to the data. The multi-
layer perceptron (MLP) neural network and Self-Organizing Map (SOM/
Kohonen-Network) are the two most widely used NNs in pattern recognition
and classification. N. Mezghani, et al. used a Kohonen NN to recognize the ba-
sic shape (17 classes were considered) of online isolated Arabic characters [30].
The database they used consisted of 432 samples per class. By combining two
separately trained Kohonen maps with a tangent vector and Fourier descriptor
features, local and global character descriptions were taken into account in the
classification, a recognition rate of 88.38% was achieved. Pruning and filtering
the maps, after training, improved the recognition accuracy to 93.54%. The au-
thors in [31] investigated the usefulness of the Kullback-Leibler divergence and
the Hellinger distance (as a replacement for the traditionally-used Euclidean
distance) in similarity measurements of the feature vectors for training Koho-
nen maps. The best achieved recognition rate showed an improvement of 0.5%
compared to the Euclidean distance by using the Hellinger distance. The Per-
sian isolated characters were also recognized in [32] by using MLP NN. Isolated
Persian letters were divided into 12 classes based on the number of dots, shapes,
and locations of their diacritics. After recognition of the complementary parts
and their locations by two MLP NN’s, the character’s main shape was analyzed
by another NN if further recognition was needed. The reported recognition rate
was 93.9% (for 4,144 letters) using the database in [29]. This method assumes
that the character’s main body is written in the first stroke. This assumption,
although valid in most cases, is not always guaranteed.
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10 Conclusion

How the Persian language adopted and evolved the Arabic alphabet is discussed
in this paper. The characteristics of different writing styles and how they may
affect handwriting system recognition, as well as details of Nasta’liq writing style,
is presented. A brief review of methods used in offline and online Persian script
recognition is provided. Obviously, many challenges still exist in Persian script
recognition research. Lack of adequate standard databases and a benchmark for
offline and online Persian recognition has made it difficult for researchers to
compare their methodologies. Isolated character recognition, while not compre-
hensive because of different shapes of characters, has been the focus of most of
the Persian script recognition research. However, real-world applications have
received less attention and word application has remained limited to a small
lexicon size. We hope that this motivates more contributions in this challenging
area of research .
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Abstract. This paper summarizes techniques proposed for off-line Arabic word 
recognition. This point of view concerns the human reading favoring an interac-
tive mechanism between global memorization and local verification sim- plifying 
the recognition of complex scripts such as Arabic. According to this considera-
tion, specific papers are analyzed with comments on strategies.  

1   Introduction 

Concerning Arabic recognition, the literature proposes several surveys that consider 
different points of view:  

− By stressing the multiplication of the source of information, from a simple classi-
fier to a combination, with simple or hybrid choices of the primitives, as described 
by Essoukri Ben Amara and Bouslama [1]. 

− By considering the nature of the script: printed or handwritten, its recognition en-
gines and its applications, like in Lorigo and Govindaraju [2]. 

− By describing the method nature: symbolic or numeric, as made by Amin [3]. 

We propose another survey based on the functioning of the human perception spec-
trum from coarse to fine (i.e. local, analytical or precise). This kind of perception 
makes it possible to better justify the choice of observations, to order them in classi-
fier cascades, and to propose solutions in case of conflict or problem, and gives sense 
to the entire chain of recognition. 

2   Human Perception of Arabic Writing 

Arabic is a calligraphic language. It provides a global rendering of the whole word, 
and the detail of the letter is often thinned, crushed, sketched so it contributes to the 
embellishment of the unit (see Figure 1). 

 

Fig. 1. Same word written with different possible elongations as described in [1] 
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Thus, the letter can assume one to four different forms according to its position in the 
word. The global form becomes the recognized one and the letter passes in the second 
plan, favoring the total appearance (see Figure 2). Consequently, a bigger alphabet now 
contains approximately 100 possible forms [1]. 

 

Fig. 2. Examples of style fonts of Arabic as described in [4] 

However, to facilitate calligraphic reading, diacritics and accents take priority when 
deciphering letters which have similar base shapes. Second, in order to not force the 
writer to continue to maintain contact between pen and paper, Arabic offers a decomposi-
tion in PAW (Part of Arabic Word), which introduces pauses in the writing that influence 
the recognition process. The PAWs simplify the script apprehension and simplify the 
linear recognition. Figure 3 gives an example of Arabic’s complexity, with sub-words 
and diacritic information. 

 

Fig. 3. Arabic writing complexity: example of a handwritten word as shown in [28] 

Considering the reading process and the perception of the writing, Arabic reading 
seems to be more global than syllabic. It is facilitated by separating the word into 
PAWs, which makes it semi-global. 

Some psycho-cognitive experiments proved that when a person reads, the process 
begins with global vision of the relevant characteristics. The basic experience of read-
ing letter demonstrated the “Word Superiority Effect”. To illustrate this phenomenon, 
McClelland and Rumelhart proposed a reading model [5]. As illustrated in Figure 4, 
the model operated on three fundamental hypotheses: 1) the perception operates in 
three different processing levels, each one representing a different abstraction level, 2) 
the perception implies parallel processing of the visual information, 3) the related 
processes are interactive, i.e. bottom-up and top-down. 
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Fig. 4. McClelland and Rumelhart Model  

− A person builds a complete image of the environment by accumulating different 
sources of sensory data. In these various stages of decision-making, he proceeds 
with a general study of the problem. If this global vision is not sufficient, he seeks 
more details [6].  

− In Arabic writing, the natural "global" pattern is the PAW: words combine PAWs. 
Furthermore, no clear physical limits occur between words, so words are recog-
nized mainly through different PAW aggregation possibilities, where only one 
should solve the entire sentence. PAWs could be compared to Latin syllables writ-
ten separately, which should be gathered correctly to have a meaning. 

We can conclude that Arabic writing satisfies the reading principle of McClelland 
and Rumelhart, as it clearly privileges the "Word Superiority Effects", while adding 
local perceptual information to facilitate word understanding. 

However, the corresponding model must be adapted to consider the PAW interme-
diate reading level and letter distortions: PAWs introduce an intermediate global level 
of information, while letter shape variations introduce difficulty to localization and 
modeling. 

3   Computing Perception Levels 

All computing methodologies try to simulate a human perception level. Considering 
human perception of Arabic writing with the particularity of PAW, this leads to a 
division of the classification methods into four classes: 
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− Global-based vision classifiers. 
− Semi-global-based vision classifiers. 
− Local-based vision classifiers. 
− Hybrid-level classifiers. 

3.1   Global-Based Vision Classifiers 

In this holistic approach, the word is regarded as a whole, allowing correlations to the 
totality of the pattern. This useful or common approach avoids the heavy task of letter 
localization and recognition use. However, its use remains limited to small vocabular-
ies or use as a pre-classification step, because its complexity grows linearly with the 
amount of word models. 

This category is assimilated to a segmentation-free approach. In fact, it means that 
if a segmentation method is used, no local interpretation occurs but information gath-
ers at the word level. In such an approach, one should find the best possible interpre-
tation of a word with an observation sequence derived from the word image, without 
first performing a meaningful segmentation [7]. 

Several works on Arabic writing derive almost directly from Latin studies. Thus 
the global approach correctly leads to two questions: 

• "Is it possible to adapt classical Latin script approaches correctly to Arabic script?" 
• "Is it possible to extract Arabic words as 'simply' as in Latin script?" 

Srihari, et al. proposes in [8] a handwritten Arabic word recognition system based 
on a feature vector similarity measure. The GSC (Gradient, Structural and Concavity) 
binary features previously used for Latin work in [9] give the best performances. The 
similarity measure is common to the two languages [9, 41]. A precision of 70% is 
achieved at a recall of 50% when eight writers were used for training. 

The specificity of Arabic writing appears only in a particular part of the work: the 
word segmentation. Due to the Arabic’s nature, the authors cannot directly evaluate the 
gap between two consecutive PAWs to decide the word limits (see Figure 5). They then 
use a neural network (NN) on a set of nine features. The authors report the presence of 
the "Alef" as the first letter of many Arabic words as the most relevant feature [8]. As this 
hypothesis is not always verified, and due to the natural homogeneous gaps between 
PAWs, the authors achieve only 60% correct word segmentation. 

Al-Badr, et al. consider in [28] that segmenting Arabic words into letters is too diffi-
cult a task considering the particular nature of the Arabic script, even when printed text. 
They propose a segmentation-free approach to recognize words. The key idea involves 
detecting a set of shape primitives in the analyzed word and arranging them best in the 
word space. The interpretation of each primitive depends on its context, positions, and 
the posterior probability maximization, allowing local misrecognition. Word recognition 
scores vary according to whether words are clean (99.39%), degraded (95.60%) or 
scanned (73.13%). 

This approach is not dedicated specifically to Arabic script. Indeed, the primitive 
shapes are classical: lines of different lengths and orientations, corners, arcs, curves, etc. 
The independence of the language has such importance that the authors assume they 
recognize isolated word. Hence, they elude the important problem of Arabic word  
segmentation, even though the event was underlined in their paper’s introduction.  
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Fig. 5. Gap calculation by Srihari, et al. in [8] 

Amin and Mansoor [29] proposed an MLP-based holistic word recognition method 
for handwritten Arabic words. The MLP input is a global vector composed of six 
kinds of feature vectors carefully chosen to represent the word globally, such as: 
number of sub-words (up to five), number of peaks in each sub-word (up to seven), 
number and position of complementary characters, and curves within each peak with 
height and width of the peak. Features are dedicated to Arabic word representation, 
making the system very specific to the language, even though the models are classi-
cal. The recognition rate of 98% on different fonts accredits the interest of adapted 
language specific features. 

Here also a question remains: how are the words located in the text? Even though 
the authors discuss the problem of PAW extraction and their interest in word recogni-
tion, they never do explain how they gather several sub-words into a whole word. 

Farah, et al. [10] use a battery of three NNs for word recognition, specific features 
feed each one: statistical, structural, or a mixture. Then, several combination proce-
dures are tested. The NNs used are classical MLPs (Multi Layer Perceptron) with 
back-propagation algorithm for training. As pixel-based information, statistical fea-
tures are language-independent: the features define the pixel density in various homo-
geneous zones of the image. Some structural features are similar to Latin systems: 
ascenders, descenders, loops, writing baseline. Others remain specific to Arabic writ-
ing: presence and number of diacritic dots and their position relative to the baseline. 
Words, isolated in the database, lead the authors to neglect, in this work, the problem 
of the location. The tests on 2,400 word images from 100 different writers achieve 
94.93% recognition rate, for 0.97% errors and 4.10% of rejection. 

Pechwitz and Märgner [19] used semi-continuous Hidden Markov Models 
(SCHMM) representing characters or shapes, as developed by Huang [20]. For each 
binary image of a word, the user estimates parameters after a pre-processing phase 
normalizing the size and the skew of the word. Then, features are collected using a 
sliding window approach, leading to a language-independent features (see Figure 6). 
As in Latin script, the middle band of the writing contains the word complexity. For 
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Arabic writing, it seems better to look at three lines parallel to the baseline at fixed 
position. The Viterbi algorithm then trains and conducts recognition. In the train-
ing phase, a segmental k-means algorithm works. By applying a frame synchro-
nous network Viterbi search algorithm with a tree-structured lexicon representing 
valid words, the recognition is achieved. The models combine into a word model 
for each of 946 valid city names. The system obtained 89% word-level recognition 
rate using the IFN/ENIT database (26,459 images of Tunisian city-names). The 
words are isolated in the database, thus this work does not deal with the word  
segmentation problem. 

 

Fig. 6. Feature extraction considered by Pechwitz and Märgner in [19] 

Khorsheed and Clocksin propose the use of spectral features for printed Arabic word 
recognition [33]. As mentioned in several works, the problem of word segmentation is 
discarded, assuming word images at the input. The originality of this work involves the 
use of a polar transformation coupled with a Fourier transform that deals with rotation 
problems (see Figure 7). In a multi-fonts approach, the system obtains 95.4% of good 
word classification by a simple matching with prototypes using the Euclidian distance on 
1,700 samples of different size, angle and translation. 

 

Fig. 7. Polar transform of three images of the same word with different scales and rotation [33] 

 



42 A. Belaïd and C. Choisy 

These works clearly accredit the word superiority principle of McClelland and 
Rumelhart. Indeed many feature combinations and models perform very well.  

But the McClelland and Rumelhart model is not rigorous as it considers two levels: 
input feature level and word level. This needs less precision than the feature research, 
but the vocabulary should be limited and each word needs its own modeling.  

We note that when the input uses low-level features, it is not necessary to introduce 
specific information, contrary to the high-level features that need adaptation to the 
writing nature. We consider extending the McClelland and Rumelhart vision model 
with another layer, linking the pixel information with high-level features, as the brain 
works with the input images. 

Once looking at these different systems, we can now answer questions asked in the 
beginning of this section.  

The first question concerns the direct reuse of Latin systems on Arabic writing. 
This question has two answers, one concerns the models and the other looks at the 
nature of the basic information extracted. 

Considering the models, Arabic systems use similar models and measures as Latin 
ones. We can deduce the adaptation of the models as unnecessary. It is logical be-
cause all the classical models perform information without a priori on its nature [8, 
10, 19, 28, 29]. 

Considering the information extraction, all the approaches maintain some classical 
features used in Latin script. Low-level information based approaches seem able to 
avoid the addition of specific features as they learn them directly [8, 29, 33]. When 
high-level features are considered, the particularities of Arabic writing lead some 
authors to search for more specific features, like diacritic points, elongations, and 
curves in the beginning or the end of words [10, 29]. 

The second question concerns Arabic word segmentation (i.e. location in the text) 
possibilities. The negative answer results from the only work that proposes a segmen-
tation method obtains low segmentation results [8]: other authors deal with segmented 
words without approaching this problem. 

Arabic word segmentation presents more difficulties than Latin writing, for differ-
ent reasons. The most important one comes from the PAW-level, which introduces a 
natural segmentation of the writing with similar intra-word and inter-words gaps. This 
problem is underlined by Al-Badr and Haralick in [28], indicating the justification of 
Arabic text is not based on inter-word space adjustment but on elongation of some 
parts of words. Khedher and Abandah confirm this with a statistical study of 262,647 
Arabic words in [34], showing an average of 4.3 letters and 2.2 PAWs per word. They 
conclude the PAW-level defines the real basic block to be processed rather than the 
word level. 

Curiously, several works assume a prior word separation without considering the 
difficulty of the task. Perhaps it is reminiscent of Latin works, where word segmenta-
tion is much easier? We can take such an hypothesis as an explanation  of why so few 
practical, industrial applications to Arabic language exist, despite all these good  
results. 

3.2   Semi-global-Based Vision Classifiers 

The particular nature of Arabic writing allows us to describe the language in fewer 
natural levels: the PAW-level. Indeed, Arabic words are built by a concatenation of 
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several independent written parts that give another natural segmentation level. This 
natural segmentation allows us to refine the analysis by reducing the basic vocabu-
lary. It explains some approaches that base their work on this level. 

By reducing the base vocabulary, it allows the possibility of extending the diction-
ary. Ben Amara, et al. illustrates this fact in [15] where the PAW-level deals with a 
moderate vocabulary of city names, usually not treatable with a global word ap-
proach. The proposed system used a PHMM (Planar Hidden Markov Model) adapted 
to the PAW morphology. Hence, a shape vertically decomposes into five horizontal 
bands, corresponding respectively from top to bottom to the ascenders, the upper 
diacritic dots, the central writing band, the lower diacritic dots, and the descenders. 
Each band is associated with a super state which corresponds to an horizontal HMM 
modeling of the concerned zone (see Figure 8). 

Although the PHMM is a classical model used for Latin script [22], its use is 
clearly dedicated to Arabic writing by the integration of Arabic specificities inside the 
model. Arabic features directly integrate in the PHMM by adapting the principal 
HMM to locate the five specific bands of Arabic shapes, while secondary HMMs 
model the stroke length variations and the diacritic information, aspects that are very 
specific to Arabic writing. Results are excellent as the authors achieve up to 99.84% 
recognition for 33,168 samples from a vocabulary of 100 PAWs [31]. 

 

Fig. 8. The PHMM architecture as defined by Ben Amara in [15,31] 

Burrow confirms in [17] that Arabic word segmentation is more difficult than for 
Latin script and proposes to tackle the problem by recognizing the PAWs separately. He 
hoped this method could cope with the large lexicon of the full database (i.e. IFN/ENIT 
with 946 different town names from 411 different writers). Interested only in word shape, 
he considered the tracing approach as detailed in [10, 30] for Latin script. He will in 
effect be converting an off-line representation into pseudo-on-line representation. Be-
cause diacritics are points, their tracing does not make sense; so they are discarded from 
the PAW images. Then, a PAW transforms in an ordered series of points describing the 
trace. 

Once K-NN classification approach is applied to each PAW, a majority vote is 
taken on its overall class and repeated for each PAW sample.  

First results result in 47% accuracy on PAWs. By refining the scoring system and add-
ing some features, including the number of dots, the author scores at 74% for PAWs on 
correctly represented classes. Global word recognition, with the addition of word-global 
features, is studied and improves greatly results, but the input images are supposed to be 
entire word in this case. No study examines on the possibility of gathering PAW informa-
tion to find words in a text line. 
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Concerning the dependence of the language’s feature, we can observe that low-
level features are able to deal with feature language specificities, as Ben Amara 
showed (i.e. horizontal run length) by adapting the PHMM model [15, 31]. Structural 
features proposed by Burrow need to be chosen correctly to reflect language specificities, 
and their use can highly influence the results [17]. 

Curiously, few works have concerned the PAW-level. As assessed in the previous sec-
tion, this level clearly defines the natural global level of Arabic writing. Thus, this section 
leads to a similar question: Do Latin works influence the tendency to recognize whole 
words rather than PAWs? 

This is correct that in reading Latin, the PAW level does not exist. The McClelland 
and Rumelhart vision model confirms this, as no intermediate level is given between 
letters and words. Two solutions exist to adapt this model: the first one extends it by 
adding a PAW layer between letters and words; the second one decrease the word-level 
to PAW-level, assuming it is the real global level. The second solution has some ad-
vantages, and global approaches would benefit if applied to PAW-level for several 
reasons: 

− Firstly, the PAW vocabulary reduces according to the word vocabulary. Thus, it 
better manages larger vocabularies. 

− Secondly, as PAW-level gives a natural segmentation of a word, the word representa-
tion will integrate it in some way. Logically, it works best to divide the representation 
according to these limits. 

− Thirdly, it transforms the word segmentation problem into a PAW gathering prob-
lem. Now, the segmentation problem has only empirical solutions, whereas the 
PAW gathering can use theoretical frameworks as HMM, which can guarantee the 
optimality of the solution. 

We remark that the McClelland and Rumelhart vision model could be extended to a 
more general approach, where the information gathering could be made recursively 
through as many levels as necessary. Reinforcing this idea is the fact that "good readers" 
can recognize word groups rather than isolated words [44]. A level-recursive approach 
can simulate this fact by gathering information through several higher-abstract structures. 

3.3   Local-Based Vision Classifiers 

In this vision level, the objective focuses on letters or smaller entities for their inter-
pretation. The process is to gather, bind, and confront these entities to identify the 
word. Such an analysis level leads to the Sayre dilemma: to find letter limits, a person 
needs to recognize them, and to recognize requires the ability to localize them. This 
problem is usually eluded by the use of implicit or explicit segmentation methods. 

Fahmy and Al Ali proposed a system with structural features [11]. During a pre-
processing phase, slopes and slants are corrected, then some measurements occur, 
such as stroke width and letter height. The user then normalizes and encodes the word 
in a canonic form, with a skeleton coding approach used on Latin [21] but adapted to 
Arabic. The word image divides into several frames, focusing on character parts, and 
each frame then divides into three segments. Then, classical features like turnings, 
junctions, and loops, detected from skeletons, become the input of an ANN (Artificial 
Neural Network). The number of inputs is 35, representing 11 features for each of the 
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three segments of a frame, plus two inputs representing dots. One of these two inputs 
represents dots above the baseline, while the other input represents dots below the 
baseline. A recognition rate of 69.7% was obtained on 300 different words from one 
writer, with a second writing of the 300 words for the training stage. 

The system tries to classify the frames: no attempt occurs to gather frames into a 
complete character. Another point concerns the word segmentation: words are sepa-
rated at the writing time, eluding the difficult problem of word segmentation. 

Trenkle, et al. propose in [32, 39] a printed text recognition system based on an 
over-segmentation approach (see Figure 9). A full page of text divides into blocks and 
lines, and each line further breaks into atomic segments, which are part of the charac-
ter. During recognition, atomic segments group in order to retrieve the whole charac-
ter according to a Viterbi analysis. Each segment group gives 424 features, obtained 
from horizontal and vertical projections and an edge-based chain code. 

An NN classifies the segment groups: it has 229 outputs according to the 117 regu-
lar Arabic character forms, 80 ligature forms, 10 Arabic digits, 20 punctuation charac-
ters, and two rejection classes. A set of decision trees also conducts classification. A 
Viterbi beam search finds the best decoding path for the entire line, given an Arabic 
text model which is encoded with the rules of Arabic typography. The model com-
bines lexicon-free and lexicon-based approaches, with a vocabulary of 50,000 com-
mon Arabic words. A dataset of 722 text images of different qualities is used for the 
realistic tests: the NN achieves 89.1% recognition, and the set of decision trees  
obtains 90.7% recognition rate. 

This work is complete, as it addresses the problems of printed Arabic text recogni-
tion, from page processing and segmentation to text recognition with an ASCII out-
put. The word segmentation problem is elegantly solved by the use of a language 
model to gather information. We note that the features used are low-level based, so as 
not to need to integrate Arabic specificities at the character level. 

 

Fig. 9. Over-segmentation applied by Trenkle, et al. in [46, 53] 

In Abuhaiba, et al. [14], the authors propose a method for the recognition of free 
handwritten text.  Based on the skeleton representation, the sub-words segment into 
strokes, that further separated into “tokens”. Tokens are single vertices representing dots, 
loops or sequences of vertices. A “fuzzy sequential machine” identifies the classes. This 
machine is composed of sets of initial and terminal states. Stroke directions are used for 
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Fig. 10. Syriac writing: inter-word gaps are larger than intra-word gaps [12] 

entering states and as a function for transitioning between states. Tokens are either 
recognized directly or used to augment the recognizer. This system achieves 55.4% 
recognition for PAWs, with 17.6% rejection, characters having 51.1% correct an-
swers, with 29.3% of rejection. Employing no lexicon, the PAW vocabulary remains 
naturally limited. Even given an obsolete computer, the approach needs long calcula-
tion time. As assessed by the authors commenting on the relative results, this work 
proposes new theoretical basis and concepts. 

Clocksin and Fernando propose in [12] an analytic system for Syriac manuscripts, 
a West Semitic language that is less grammatically complex than Arabic. The word 
segmentation happens more simply in Arabic writing, as the intra-word gaps seem to 
be clearly smaller than inter-word gaps (see Figure 10), contrary to Arabic writing. 
The grammatical functions almost appear as word prefixes or suffixes, instead of 
separate words, so it is not possible to have a global word approach without a huge 
dictionary. This language construction approaches the Arabic one. Thus, the authors 
focus on character recognition. 

A text page then separates into words using horizontal and vertical projections. 
Words segment into letters by over-segmenting and removing bad segmentation 
points with a segmentation approach specially adapted to Syriac writing: approxi-
mately 70% of the characters segment correctly. Some features are extracted from 
character images: different parts of the image and polar transformation. Classification 
is based on a Support Vector Machine (SVM) considering a “one against one” 
scheme. As in Arabic, a letter can have different shapes, thus can belong to different 
classes. The best feature combination gives 91% recognition rate for manuscript let-
ters, and 97% for typeset letters. 

As in previous works, this one uses low-level features, and its adaptation to the lan-
guage specificities occurs through the model learning. The low rate of 70% character 
segmentation accredits the fact that, as for Latin scripts, a letter segmentation cannot be 
done correctly. 

Miled, et al. [18] propose an analytical approach based on HMMs for the recog-
nition of Tunisian state names. They integrate the notion of PAW in their system. 
They group letters with the same body but different diacritics to "solve" the prob-
lem of diacritic detection and classification. A text line segments into PAWs and 
isolates letters, then PAWs become graphemes, using their upper contour and heu-
ristic rules in a way similar to approaches for Latin. Each grapheme contains two 
vectors: the first has topological features corresponding to human perception, like 
loops, openings, relative size, relative position, etc., the second has moment-like  
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Fig. 11. Word model proposed by Miled, et al. [18]. α, β, and γ stand for characters, and # 
represents a space. 

descriptors (here Fourier descriptors were kept). The grapheme identification uses a 
K-NN classifier, which obtains 84.90% recognition. 

HMM describes word composition. Word models are built by concatenating 
grapheme states, considering several ways to solve over- and sub-segmentation, and a 
space state for intra-word gaps (see Figure 11). The approach is “flat”: each word has its 
own HMM representation, and the input sequence is analyzed by all these models. Tests 
made on isolated word images, has reached 82.52% recognition with a lexicon of 232 
words. 

This work does not focus the word separation problem, but the HMM approach can 
solve it at higher representation level. An interesting aspect of this work considers over- 
and under- segmentation and integrates the intra-word separation as a blank character: 
All the segmentation problems of Arabic script are then covered. 

Fakir, et al. proposes to use the Hough transform for the recognition of printed Arabic 
characters [38]. A full text page is digitized, noise cleaned, de-skewed and segmented 
into lines. Then, lines separate into words assuming a bigger gap between words than 
between PAW. Character segmentation uses the projection profile of the word’s middle 
zone, with a fixed threshold that determines the breaks in the projection profile. A second 
segmentation applies to extract diacritics. 

Features are then extracted using the Hough transform, which applies to the character 
skeleton to detect strokes (see Figure 12). Thus, a character is represented as a set of 
strokes. At the recognition step, the set is compared with one reference pattern. A second 
stage completes the recognition by refining the classification according to the diacritic 
information. Recognition of 95% is achieved on 300 characters obtained from the seg-
mentation process. The most common confusions occur when thinning brings some 
different patterns closer. 

With no information about the effectiveness of the segmentation itself, 300 words 
were collected and only 300 letters were used for the test: this supposes that not all the 
characters were correctly segmented. 

Some research closely examines character recognition. They assume that text can be 
segmented purely into letters. This assumption is unrealistic: the segmentation prob-
lem has been presented for some time with Latin script, and many studies have shown 
it is globally impossible. As it seems more difficult to segment Arabic script, logically 
this segmentation will not be possible. Sari, et al. confirms the point [40], having 
proposed a segmentation system dedicated to Arabic writing: they obtain only 86% 
correct letter segmentation.  
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Fig. 12. Array of accumulators’ content given by the Hough transform of a character [38] 

The value of work based on character recognition reduces to the models and fea-
tures used that could be integrated into other, more complete works. 

Alnsour and Alzoubady proposed in [35] a Neocognitron to classify handwritten 
characters. The input of this particular NN is composed of structural features: Free-
man code chain coordinates of starting and ending points, loops, and primitives such 
as segments with different orientations, corners and dots. These features allow them 
to achieve 90% character recognition, with 3.57% rejection. The system assumes a 
context of handwritten Arabic document recognition software that should be able to 
segment words directly into letters. 

Asiri and Khorsheed propose to use two different NN architectures for handwritten 
Arabic character recognition [36]. The first architecture has six output nodes and is 
designed to classify the character into one of the six groups of similar shapes. Accord-
ing to this first solution, a second NN that corresponds to the group will take the final 
decision. For all NNs, the inputs correspond to a certain number of Haar wavelet 
transform coefficients. The best results are achieved for 1,024 coefficients and give 
88% recognition.  

For this work, character samples were collected individually, where writers penned 
isolated letters into small rectangles. 

Cowell and Hussain worked on isolated Arabic printed characters [37]. A character 
image is normalized by 100x100 pixels, and then a signature is extracted by counting 
the black pixels in each row and column. This signature is compared to those of a 
template set, and the modules of the difference for each row and each column is 
summed: the lower the value, the closer the forms.  

The objective aims at a quick matching method: here the signature matching car-
ries 200 comparisons per template, against 10,000 for a direct image matching. No 
clear result is given, but the confusion matrix supposes a 100% recognition rate. 

As previously explained, several approaches give good results, showing that, as for 
Latin script, the analytic approach can perform very well. Such an approach does 
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present some drawbacks. First is the classical problem of bad segmentation that can 
lead to over- or under- segmentation; and such errors generally lead to misclassifica-
tion. Moreover, the segmentation process has to be adapted to Arabic script, to ac-
count for its specificities like vertical ligatures: thus Latin segmentation methods 
cannot be used efficiently without adaptation. 

Other problems lie in the approach itself, possibly exacerbated by the language. 
Thus one problem lies in the observation independence hypothesis. As letters or seg-
ments are recognized independently, any error perturbs the whole recognition process. 
In fact, the McClelland and Rumelhart word superiority effect is not taken into ac-
count because the word is not considered as a whole, rather as a sum of small parts. 

Another problem lies with the inadequacy between segmentation and models. In-
deed, the segmentation is based on structural information totally independent of the 
model nature. Thus, the modeling is biased at the source by forcing the model to align 
on non-optimal limits. This may be solved in two ways: 

− The use of higher level features presents the first solution: as the image is inter-
preted, the distortions are implicitly removed. The drawback occurs when any bad 
interpretation of the image allows the lost of a huge quantity of information, often 
leading to a misclassification. 

− The second way uses implicit segmentation: the models can "choose" their best 
limits. Unfortunately all the models cannot be used in such an approach without in-
creasing the calculation time exponentially. 

We note that in Arabic script, the notion of letter limits varies greatly, as horizontal 
stroke elongations frequently occur in letters and letter ligatures. This accredits the 
point of view of Choisy [42] that proposed not to search any letter limits: thus, the 
model can focus on pertinent letter information without making difficult separation 
decisions on the fuzzy ligature parts. This proposal fits the McClelland and Rumelhart 
model, where precise information position is not important, only its presence in an 
approximate location. 

 

Fig. 13. The NSHP-HMM system applied on Bangla script 
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The recognition process basically uses a combination of a random field (Non 
Symmetric Half Plane), drawing its observation directly in the image, and a HMM, 
taking into account the column observations in the image, hence tackling the problem 
of length word variations. Figure 13 shows the aspect of this system applied in our 
Laboratory on Bangla script that presents some calligraphic similarities to Arabic. 

3.4   Hybrid-Level Classifiers 

By combining different strategies, it is possible to come nearer to principle of reading: 
the analysis must be global for a good synthesis of information, while being based on 
local information suitable to make this information emerge [16, 23]. Such a combina-
tion better approaches how a person reads, which is to first analyze global word 
shapes, then searches for local information only to discriminate ambiguous cases. 

As local-based approaches gather local information up to words, they could be hy-
brid ones. An important difference exists between the two approaches: hybrid ap-
proaches attempt a multi-level analysis of the writing, while local-based approaches 
use only the gathering of local information. Hybrid approaches aim to combine differ-
ent levels of features and interpretation, leading to systems closer to the McClelland 
and Rumelhart proposal. 

Souici, et al. [24] propose a neuro–symbolic hybridization, considering that people 
rarely, if ever, learn purely from theory or examples. A hybrid system that effectively 
combines symbolic knowledge with an empirical learning algorithm might be similar 
to student who is taught using a combination of theoretical information and examples. 
The neural and symbolic approaches complement each other, so their integration 
presents an interesting issue. 

For that purpose, they defined a neuro-symbolic classifier for the recognition of 
handwritten Arabic words. First, structural features are extracted from the words con-
tained in the vocabulary. Then, a symbolic knowledge base that reflects a classifica-
tion of words according to their features is built. Finally, a translation algorithm (from 
rules to NN) determines the NN architecture and initializes its connections with spe-
cific rather than random values, as is the case in classical NNs. This construction 
approach provides the network with theoretical knowledge and reduces the training 
stage, which remains necessary because of the variety of styles and writing condi-
tions. The recognition rate varies from 83.55% (4.75% substitution) given by the  
rule-based approach, 85.5% (14.5% substitution) given by the NN, to 93% (7%  
substitution) given by the combination. 

A similar approach has been applied to handwritten Arabic city-names recognition 
[43]. The Knowledge Based Artificial NN (KBANN) generated using translation rules 
compares to a classical MLP. The MLP obtains 80% on 55 vocabulary words, and the 
KBANN performs 92%. The MLP has a less complex architecture than the KBANN, 
but has a few more neurons. 

The hybrid aspect of these works resides in the NN creations: based on a multi-
level word description that considers different levels of rules to classify the word 
according to its number of PAWs, its features, and its diacritic information. Thus, the 
network implicitly looks at different perception levels. 



 Human Reading Based Strategies for Off-Line Arabic Word Recognition 51 

Maddouri, et al. proposed a combination of global and local models based on a 
Transparent NN (TNN) [23]. This model stems from the model proposed by 
McClelland and Rumelhart for global reading and adapted by Côté [25] for Latin recog-
nition. The TNN is composed of several layers, in which each is associated to a decom-
position level of the word. As Coté's TNN had three layers corresponding to features, 
letters, and words, Maddouri extended it to account for the Arabic PAW-level. Hence, 
the first level corresponds to features, the second to letters, the third to PAWs, and the 
fourth to words. In each level, the NN cells represents a conceptual value: primitive, 
letter, PAW, or word (see Figure 14). Training was operated manually by fixing the 
weights for the cell connections. These weights are determined statistically, with each 
word assigned to the various decompositions in the three conceptual levels. 

The recognition process operates during several perceptive cycles, propagating hy-
potheses from a feature level to word level, looking for their association to the composi-
tion levels of the word and retro-propagating information from the word level to refine, 
or to extract the features. More precisely, in propagation movement, the global model 
proposes a list of structural features characterizing the presence of some letters in the 
word. Then, it proposes a list of possible letters, PAWs, and words containing these char-
acteristics. In the back-propagation movement, the activated words and PAWs emit some 
hypotheses on which letters could be present. These hypotheses research the correspond-
ing features, or directly to the letter if it has no robust feature. In this last case, a corre-
spondence between the letter image and the corresponding printed one is performed by 
a local-based model using the correspondence of their Fourier descriptors, playing the 
role of a letter shape normalizer. 

 

Fig. 14. The TNN approach as defined by Maddouri in [23] on the word “Arbaa” 
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This principle applies to PAW and word recognition, PAW recognition being made 
by removing the word layer. The handwritten database contains 2,100 images of the 
70 word vocabulary of Arabic literal amounts, containing 63 different PAWs. Using only 
global features, similar to a simple propagation, PAW recognition rate is 68.42%, and 
word recognition rate is 90%. The addition of local features in the next perceptive cycles 
reaches a score of 95% for PAWs and 97% for words.  

The value of this approach involves the progressive analysis, according to the dis-
criminative need of the dictionary: thus, for very distinct shapes, a simple propagation 
may be sufficient. For words with similar shapes, more precise information is needed to 
discriminate them. The "drawback" comes from the information locali- zation, that be-
comes increasingly difficult with the information precision, but this "problem" is inherent 
to the spirit of such an approach. 

This work comes close to the McClelland and Rumelhart approach. The word superi-
ority effect increases as word recognition performs better than PAW recognition: word 
shape features are thus sufficient to achieve correct results. The analysis refining princi-
ple is clearly efficient, as shown in the improvement of the score. 

As few hybrid approaches exist for Arabic writing, we need to examine interesting 
work on other languages. 

Pinales and Lecolinet in [26] proposed a system, both analytical and global, that em-
phasizes the role of high-level contextual information (see Figure 15). This model uses a 
top-down recognition scheme called backward matching and a bottom-up feature extrac-
tion process, which operates competitively. This approach has some similarities with the 
TNN proposed by Côté and Maddouri, as words "retro-propagate" their information to 
resolve ambiguities and complete missing letters. First results are very encouraging, 
showing such an approach is pertinent. 

 

Fig. 15. Pinales and Lecolinet Neural Networks combination architecture [26] 
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Choisy has introduced another work on Latin script [16]. The approach proposes to 
use the elasticity property of the NSHP (Non Symmetric Half Plane) to normalize 
word images in a non-linear way. NSHP delineates focus pixel features based on 
learned ones, giving an implicit state-based normalization. The normalized images 
then are analyzed by a classical NN. Results show the efficiency of this approach. The 
drawback of this approach occurs with the compression of information: even though, 
contrary to the SDNN, the NN input performs a true adaptation to the image, normali-
zation is a source of information loss. 

Results show that hybrid approaches are very efficient. Corroborating the 
McClelland and Rumelhart approach, the multi-level analysis refines the analysis with 
more flexibility than other approaches. In particular, the question arises of whether to 
use information focalization rather than segmenting, which could be an important 
point in hybrid approaches. 

We can conclude that even if the McClelland and Rumelhart model is not proven 
to be the correct simulation of human reading, their approach still leads to efficient 
reading systems. This is very interesting because it links the psychology works and 
the formal representations by computers. We still remark that the proposed model is 
clearly oriented toward Latin script. For Arabic script, it seems necessary to extend 
the model with a PAW-level. Thus the McClelland and Rumelhart principle is vali-
dated, but the corresponding model should be adapted to the language considered. 

4   Conclusion 

Several conclusions can be drawn by considering all the research reported in this 
paper regarding reading Arabic without neglecting the language characteristics.  

The first is that low-level features are language independent. Once extracted (simi-
larly for all the scripts), the training process can arrange their proximity to the lan-
guage studied. At the opposite, high-level features are language-dependent and need 
to develop specific extraction methods to retrieve all information. Obviously, a com-
bination of these features should perform better, each feature level comple- menting 
the drawback of the other. 

In another point, PAW level proves very important for Arabic script modeling: 
contrarily to Latin script, the basic entity is not the word. Global approaches should 
be based on PAW. Analytical ones gain by integrating this information level. A first 
effect reduces the vocabulary complexity by gathering the information on an interme-
diate level. 

Considering the reading approaches, hybrid ones seem very promising. They effi-
ciently combine different perceptive levels, allowing discrimination of words without 
a complete description. In comparison with global approaches, the addition of local 
information allows it to extend the vocabulary with less confusion. Compared to local 
approaches, hybrid ones avoid the full-segmentation problems and are less disturbed 
by information loss.  

Another conclusion stemmed from the works themselves. In particular, two points 
arose as problems: segmentation in words and in letters. 

The letter segmentation problem was raised a while ago for Latin scripts. Several 
works examine this case, and it is now commonly accepted that this problem has no 
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solution. As Arabic writing is often described as more complex than Latin, it seems 
obvious that a letter segmentation cannot be effective. This leads to the question: why 
are many works based on such a hypothesis? It seems that the experiences gained on 
Latin languages are not transposed completely too Arabic writing. 

Concerning word segmentation (i.e. location in the text), the problem hid in the 
works on Latin script, in which word separation can be considered as a problem 
solved in many cases. For Arabic writing, several works accredit the difficulty of this 
task. As a word analysis is interesting to show the power of reading approaches, there 
a gap exists between their modeling and their extraction. We think the extraction will 
increase by gathering PAWs through a mathematical formalism, such as HMM. 

Globally, we observe few researches that try to take into account the whole problem 
of Arabic script. Thus the word segmentation problem is mainly eluded, the PAW-level 
global recognition was the object of very few works, and several segmentation-based 
approaches made the irrelevant hypothesis of pure letter segmentation. 

Some other problems, like elongations and vertical ligatures, are often cited in 
Arabic script description, but are taken into account less often in the work itself. 

It seems that the main experience brought from Latin works concerns the models 
and the features, but not problems encountered and processes followed to solve them. 
In fact, many specific problems were raised, but many works consisted of another set 
of models, features, methods, from Latin works. 
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Abstract. Searching handwritten documents is a relatively unexplored
frontier for documents in any language. Traditional approaches use either
image-based or text-based techniques. This paper describes a framework
for versatile search where the query can be either text or image, and the
retrieval method fuses text and image retrieval methods. A UNICODE
and an image query are maintained throughout the search, with the
results being combined by a neural network. Preliminary results show
positive results that can be further improved by refining the component
pieces of the framework (text transcription and image search).

1 Introduction

While searching electronic text is now a ubiquitous operation, the searching of
scanned printed documents, such as books, is still emerging. The searching of
scanned handwritten and mixed documents is a virtually unexplored area.

Much current interest surrounds processing handwritten Arabic language doc-
uments. One unsolved problem involves developing a reliable method, given some
query, to search for a subset among the many such documents, similar to search-
ing printed documents. The challenge comes from the unique structural features
of Arabic script and the relative infancy of the handwriting processing field.

Content-based information retrieval (CBIR) is a broad topic in information
retrieval and data mining [1]. The distinct areas of CBIR include text retrieval
and image retrieval. Correspondingly, two approaches exist to search scanned
documents. One approach uses direct image retrieval (word spotting with pro-
totype images). Another converts the document to an electronic textual repre-
sentation (ASCII for English and UNICODE for Arabic) and searches it with
text information retrieval methods used routinely on English-based documents.
Both approaches can succeed under ideal circumstances, which are difficult to
achieve with current handwriting recognition technology. Image-based searches
do not always return correct results. Arabic handwriting recognition technology
does not allow full transcriptions of unconstrained documents. By exploiting the
strengths of both methods, combining the methods, we achieve better perfor-
mance than either gives separately.

We describe a framework for versatile search of Arabic handwritten docu-
ments. By versatile search, we mean versatility in both the query and the search
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strategy, combining content-based image retrieval and text-based information
retrieval. Both the original scanned image and the (partial) transcription are
maintained at all stages. Searches proceed in parallel directions on both docu-
ment representations. Any query also splits into both an image and a UNICODE
representation, which act on the corresponding document instance. The results
from the parallel searches combine into a single ranking of candidate documents.

2 Related Work

Searching scanned, printed documents in English has had significant success.
Taghva, et al showed [2] that information retrieval performance continues to be
high even given imperfect OCR performance. Russell, et al [3] note this can, at
least in part, be attributed to redundancy and the fact that, while OCR perfor-
mance may commit some errors, it performs very well for English. They go on to
discuss the use of handwritten and typed queries.

A system for directly searching scanned, handwritten English was discussed
in [4]. This system, known as CEDAR-FOX, was developed for forensic docu-
ment analysis applications [5],[6]. Searching scanned Arabic handwriting within
a system known as CEDARABIC, based on CEDAR-FOX, was first reported
in [7]. Both systems are designed to be interactive for use by a human docu-
ment examiner and have many pre-processing operations such as line and word
segmentation, rule-line removal, image enhancement, etc.

3 Queries and Searches

The query can take several forms: (i) a UNICODE string of Arabic text (for
example, entered on an Arabic keyboard) specifying a word or words the user
wants to appear in the handwritten document, (ii) an English word or words
corresponding to an idea that should appear in the Arabic document, or (iii)
an image of an Arabic word or words. Documents should be returned that also
have a representation of this Arabic word.

Word spotting algorithms begin with an image query; either a full word or
component prototype characters. The engine searches the document directly,
with only minor pre-processing steps, such as noise removal, etc. We take two
approaches for word spotting: holistic word shape and character shape. In the
word shape based method, features are extracted from prototype word images.
This prototype either can be provided with the query, or can be found in a
library of images based on a keyword. We then compare the features of a can-
didate word to the prototype words, choosing the best match. The character
shape based method splits a candidate word into sequences of candidate compo-
nent characters. Each sequence matches to prototypes of the characters in the
query word. The sequence of candidate characters with the maximum similarity
to the prototypes receives the highest score for that word, with the score acting
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as a confidence measure. The word shape method performs well given many
prototype images. If none are available, the character-based method is the only
available approach. In situations where both methods may apply, their rankings
combine.

To partially transcribe documents, we use several approaches of word recogni-
tion. A baseline, simple method performs a variation of character recognition and
tries to deduce a word directly. Arabic has an advantage over other languages,
such as English, because of the presence of subwords that are predictably dis-
tinct. In a second method, we compare the candidate characters against those
suggested by a lexicon of words, choosing the candidate representation with the
best score. Given larger lexicons generally result in poorer performance, we limit
the lexicon size when using such a method.

4 Framework

Figure 1 gives an overview of the versatile search framework. A key point: both
image and text queries are maintained against image and text versions of the
document throughout the searching process, with their results being combined
with a neural network.

Fig. 1. Versatile Search Framework

A critical common preprocessing step necessary for both methods involves
segmenting a page into lines, and sometimes a line into words. Figure 2 shows
the CEDARABIC representation of a segmented document.
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Fig. 2. Segmented Document

5 Segmentation Algorithms

Automatic word segmentation, as presented in [8], takes several features on ei-
ther side of a potential segmentation point and uses a neural network to decide
whether the point falls between two distinct words. The tasks of segmenting
Arabic script and segmenting Latin script differ in the presence of multiple dots
above and below the main body in Arabic and the absence of upper case letters
at the beginning of sentences in Arabic. The method presented had an overall
correctness of 60%.

The segmentation free method attempts to perform spotting and segmenta-
tion concurrently. Rather than having a candidate word image, an entire line
image acts as input. The line splits into segments based on an algorithm similar
to the ligature-based segmentation algorithm used in [9]. All realistic combina-
tions of adjacent, connected components are considered as potential areas where
the desired word may appear. This approach exhaustively searches a line, look-
ing for a given word image, while, at the same time, keeping the number of
evaluations manageable by considering only a small subset of potential regions
in the image.

5.1 Automatic Word Segmentation

The process of automatic word segmentation begins by obtaining the set of
connected components for each line in the document image. The interior contours
or loops in a component are ignored for the purpose of word segmentation, as
they provide no information for this purpose. The connected components group
into clusters, merging minor components such as dots above and below a major
component.
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Also particular to Arabic, many words start with the Arabic character “Alef”.
The presence of an “Alef” strongly indicates the possibility of a word gap be-
tween the pair of clusters. The height and width of the component define two
parameters used to check if the component is the character “Alef”. Every pair
of adjacent clusters are candidates for word gaps.

Nine features are extracted for these pairs of clusters and a neural network de-
termines if the gap between the pair is a word gap. The features are: (i) width of
the first cluster, (ii) width of second cluster, (iii) difference between the bound-
ing box of the two clusters, (iv) flag set to 1 or 0 depending on the presence or
absence of the Arabic character “Alef” in the first cluster, (v) the same flag for
the second cluster, (vi) number of components in the first cluster, (vii) number
of components in the second cluster, (viii) minimum distance between the convex
hulls enclosing the two clusters, and (ix) the ratio between the sum of the areas
enclosed by the convex hulls of the individual clusters to the total area inside the
convex hull enclosing the clusters together. The minimum distance between con-
vex hulls is calculated by sampling points on the convex hull for each connected
component and calculating the minimum distance of all such pairs.

A neural network was trained using these nine features with a feature vector
labeled as to whether it is a word gap. This is similar to the neural network
approach used for English postal addresses [10], but with different features.

Automated Word Segmentation Performance. The overall performance
was found to be 60%. In [8], the authors noted that a more complex set of
features is expected to yield a higher level of performance.

5.2 Segmentation-Free Line Processing

The segmentation-free algorithm processes the words on a per line basis rather
than relying on pre-segmented words. The algorithm can be viewed as a sequence
of steps. First, the image is processed into component lines, then checkpoints are
generated for a given line. The line is scanned with a sliding window, generating
candidate words and scoring them, as well as filtering nearly equivalent candidates.

Candidate Segmentation Algorithm. The algorithm used on the line to
generate checkpoints is essentially the same as the one used to generate candi-
date character segmentation points in candidate words in the spotting step. It
operates via a combination of ligatures and concavity features on an encoded
contour of the components of the line image. Average stroke width estimates are
used to determine the features.

Ligatures, as noted in [9] present strong candidates for segmentation points in
cursive scripts. Ligatures are extracted in a similar way, as in [9]; if the distance
between y-coordinates of the upper half and lower half of the outer contour for
a x-coordinate is less than or equal to the average stroke width, then the x-
coordinate is marked as a ligature element. Concavity features in upper contour
and convexities in the lower contour also generate candidate segmentation points,
which are especially useful for distinct characters which touch (as opposed to
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being connected). A ligature will cause any overlapped concavity features to
be ignored. For a given x-coordinate, if a concavity and convexity overlap, a
segmentation point is added for that x-coordinate.

While the character-based method described in [9] uses this segmentation
method to split a word into candidate characters, the segmentation-free line
processing method uses it to split the line, to generate candidate word regions
on the line. Arabic has predictable regions of white space in a word based on
the presence of non-connective characters. Therefore, the number of connected
components in a word is predictable as well.

Line Scanning. The method utilizes a sliding window. The scan’s direction is
unimportant because all realistic combinations of connected components will be
considered.

Each character class c in Arabic associates with a minimum and a maximum
durational length (minlen(c) and maxlen(c) respectively). These lengths are
result from segmenting a representative dataset of characters with the same
segmentation algorithm, and taking the minimum and maximum values for each
character. Given the nature of the Arabic character set, the upper bound for all
characters is five, not four as in [9].

The search algorithm will scan for candidate words consisting of a range of
segments. For a given search word W consisting of n characters, c0 to cn−1 ∈ W ,
the minimum number of segments minlen(W ) considered is

∑n−1
i=0 minlen(ci)

and the maximum considered length maxlen(W ) is
∑n−1

i=0 maxlen(ci).
The scanning algorithm considers each segment s on a line generated by the

segmentation algorithm. For a given segment si, if i = 0 or if si.left > si−1.right
(i.e., horizontal space appears to the left of the segment), it is considered a valid
start point. Similarly, for a given segment si, if i = max(s) or if si.right <
si+1.left (i.e., horizontal space appears to the right of the segment), it is con-
sidered a valid endpoint. The algorithm considers candidate words as ranges of
segments starting with some valid start point si, ending with a valid endpoint
sj , such that minlen(W ) ≤ j − i + 1 ≤ maxlen(W ).

While this tends to result in more candidate words, it does not result in a
dramatic decrease in performance given each Arabic word is broken only into a
few pieces, separated by white space.

Filtering. Often, a candidate word influences neighboring candidate words’
scores. Neighboring candidate words are those words with overlapping segments.
Often, a high scoring word will also have high scores for neighboring candidates.
One issue arises when the high scoring word is, in fact, an incorrect match. In
this case, the incorrect choice and several of its neighboring candidates may
receive similarly good scores, pushing the rank of the actual word lower in the
list. Another issue occurs when the target word appears multiple times in a
document. The best matching words’ neighboring candidates can depress the
second occurrence’s rank. Various ways of dealing with the overlap meet with
different degrees of success.
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The approach taken in the current implementation of our algorithm maintains
the candidate word that has the highest score of the overlapping words.

6 Image-Based Word Shape Matching

The word segmentation is an indexing step that occurs before using word shape
matching for word retrieval. A two-step approach performs the search: (1) proto-
type selection: the query (English text) obtains a set of handwritten samples of
that word from a known set of writers (the prototypes), and (2) word matching:
the prototypes locate each occurrence of those words in the indexed document
database. The entire set of test word images is ranked where the ranking cri-
terion is the mean similarity score between prototype words and the candidate
word, based on global word shape features.

6.1 Prototype Selection

Prototypes, which are handwritten samples of a word, are obtained from an
indexed (segmented) set of documents. These indexed documents contain the
groundtruth (English equivalent) for every word image. Such an indexing can
be done with a transcript mapping approach, as described in [11]. Synonymous
words, if present in the truth, also help obtain the prototypes. Hence, queries
such as “country” will result in prototypes that have been truthed as “country”
or “nation,” etc. A dynamic programming Edit Distance algorithm matches the
query text with the indexed word image’s truth. Those with distance as zero are
automatically selected as prototypes, while others can be selected manually.

6.2 Word-Matching

The word-matching algorithm uses a set of 1,024 binary features for the word im-
ages. These binary features are compared using the correlation similarity mea-
sure described below to obtain a similarity value between 0 and 1. This similarity
score represents the extent of the match between two word images. The smaller
the score, the better the match. For word spotting, every word image in the test
set of documents is compared with every selected prototype, determining a distri-
bution of similarity values. The distribution of similarity values is replaced by its
arithmetic mean. Every word ranks in accordance with this final mean score.

Similarity Measure. The method of measuring the similarity or distance be-
tween two binary vectors is essential. The correlation distance performed best
for GSC binary features [12], which is defined for two binary vectors X and Y,
as in equation 1

d(X, Y ) =
1
2

(

1 − s11s00 − s10s01

[(s10 + s11)(s01 + s00)(s11 + s01)(s00 + s10)]
1
2

)

(1)

where sij represents the number of corresponding bits of X and Y that have
values i and j.
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7 Lexicon-Based Matching

This approach uses the Arabic sequences of characters for words in the lexicon
to select sets of prototype images representing the characters forming them. A
pre-processing step is a line and word segmentation process, as described in
[8]. The candidate word image first splits into a sequence of segments, with
an ideal result of individual characters in the candidate word being separated.
The segmentation algorithm uses “oversegmented” words attempting to avoid
placing more than a single character into a segment. Segments are then rejoined
and features extracted, which are, in turn, compared to features of prototype
images of the characters. Further issues of under-segmentation unique to Arabic
are resolved using compound character classes. A score that represents the match
between the lexicon and the candidate word image is then computed. The score
relates to the individual character recognition scores for each of the combined
segments of the word image.

7.1 Character Dataset

Unlike the method presented in [8], this method depends on character images
rather than word images to form a basis for comparison. In this method, the im-
age essentially divides into component characters, and each character is matched
for similarity, in contrast to the latter’s method of matching an entire word
shape. The number of characters in Arabic is rather small compared with the
number of potential words, and a library of component characters can easily be
incorporated directly into the system. This eliminates the indexing phase of [8].

Such a character database was not readily available, so a new character image
dataset was derived from the existing Arabic document dataset produced from
the CEDARABIC [7] project. The original dataset consisted of a collection of
handwritten documents produced from a variety of authors, described in Sec-
tion 9.1. The scanned words were individualized and groundtruth in the form
of raw ASCII descriptions of the Arabic characters was assigned. The derived
dataset consists of images of single Arabic characters and character combina-
tions. Approximately 2,000 images of characters and character combinations in
other configurations were created by allowing the ligature based segmentation
algorithm to create candidate supersegments of the truthed words. The best can-
didate supersegments were manually matching to the corresponding character or
character combination when the segmentation was successful. Both left to right
and right to left versions of the writings were tested by flipping the image along
the vertical axis. The original right to left images produced slightly better results
(left to right versions occasionally seemed more prone to undersegmenting the
words). The 2,000 images represent a small fraction of potential images from
this dataset. Work on extending this dataset continues.

7.2 Features

Word Model Recognizer (WMR) features for each of the character images were
extracted and incorporated into the recognition engine of CEDARABIC. As
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described in [13], the WMR feature set consists of 74 features. Two are global
features – aspect and stroke ratio of the entire character. The remaining 72
are local features. Each character image is divided into nine subimages. The
distribution of the eight directional slopes for each sub-image form this set (8
directional slopes × 9 subimages = 72 features). Fli,j = si,j/NiSj , i = 1, 2, ..., 9,
j = 0, 1, ..., 7, where si,j = number of components with slope j from subimage
i, where Ni = number of components from subimage i, and Sj = max(si,j/Ni).
These features are the basis of comparison for the character images derived from
the segmentation of words to be recognized. To date, this appears to be the first
application of WMR features to Arabic recognition.

To obtain preliminary results, the base shape of a letter was mapped to all
derivations of that letter. For example, the base shape of the character beh
mapped to beh, teh, and theh. The initial and medial forms of beh also mapped to
the initial and medial forms of noon and yeh. If separately truthed versions were
available, specifying explicit membership to, for example, teh, such characters
were included only in teh’s set of features.

8 Image Processing and Segmentation

Image processing happens via a method similar, in part, to that described in
[14]. First, a chain code representation of the binary image’s contours is gen-
erated. Noise removal, slant correction, and smoothing occurs. Segmentation is
performed via a combination of ligatures and concavity features on an encoded
contour of the image’s components. Average stroke width is estimated and used
to determine the features. The number of segmentation points is kept to a min-
imum, but, unlike in [14], the maximum number of segmentation points per
character is five. WMR features are extracted from segments.

As previously mentioned, this method aims to oversegment words in the hope
of eliminating under-segmentation altogether. Under-segmentation in ligature-
based segmentation of Arabic text, however, continues to be problematic given
the presence of character combinations and vertically separated characters. For
example, some writing styles do not mark certain letters with much clarity –
especially initial characters, for example, initial yeh’s. The ligature-based seg-
mentation proceeds horizontally, seeking breaking points at various positions
along the x-axis, so the vertical “stacking” of characters cannot be solved by
simply increasing the sensitivity of the segmentation. To solve these issues, char-
acter classes were defined corresponding to the common character and vertically
occurring combinations.

8.1 Preprocessing Lexicon

An Arabic word is specified as a sequence of the approximately 28 base letters.
To aid recognition, a simple algorithm maps the given text to the correct vari-
ation of each character. For example, “Alef|Lam|Teh|Qaf|Alef maksura|” maps
to “Alefi|Lami|Tehm|Qafm|Alef maksuraf |,” where “i” means the letter is in the



66 S.N. Srihari, G.R. Ball, and H. Srinivasan

initial position, “m” means the letter is in the medial position, “f” means the
letter is in the final position, and “s” means the letter is separate. Additional
post-processing steps to the Arabic lexicon combine adjacent individual charac-
ters in appropriate positions into character combination classes. For example,
“Lami|Meemm|” is mapped to “Lammeemi.”

The new mapping system for the approximately 150 new character classes was
incorporated into the character recognition model of CEDARABIC, replacing
the support for English letters carried over from CEDARFOX.

8.2 Word Recognition

The objective aims to find the best match between the lexicon and the image.
In contrast to [14], up to five adjacent segments are compared to the character
classes dictated as possibilities by a given lexicon entry. In the first phase of the
match, the minimum Euclidean distance between the WMR features of candidate
super-segments and the prototype character images is computed. In the second
phase, a global optimum path is obtained using dynamic programming based on
the saved minimum distances obtained in the first matching phase. The lexicon
is ranked, the entries with the lowest total scores being the closest matches.

Testing proceeded on the same 10 authors’ documents, as in [8]. Recognition
was attempted on approximately 180 words written by each of the 10 authors
(for a total of approximately 1,800 words). Recognition was attempted in two
runs, one with a lexicon size of 20 words and one with 100. The lexicon was
generated from other words among the 180 being recognized. All the authors
wrote the same words for the documents. The words and the lexicons in the
tests were the same for all authors.

8.3 Word Spotting

Word spotting proceeds in a similar fashion to word recognition. For word spot-
ting, the lexicon consists only of the word being spotted. A score against this
lexicon entry is generated for each candidate word in the document. The can-
didate words rank according to score, the words with the best scores are most
likely to be the spotted word.

From the documents written by the authors, 32 words were chosen at random
and “spotted,” in a similar fashion to the experiments performed in [8]. Note
that the recall for word spotting, when utilizing the expanded Arabic character
classes, comes to nearly 80% for a precision of 50, which represents a significant
improvement over other methods (using simply the Arabic letters individually
and the image based method described in [8]).

9 Results

9.1 Document Image Database

For evaluating the results of our methods, we used a document collection pre-
pared from 10 different writers, each contributing 10 different full page documents
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in handwritten Arabic. Each document contains approximately 150 – 200 words
each, with a total of 20, 000 word images in the database. The documents were
scanned at a resolution of 300 dots per inch, which gives optimal performance of
the system.

For each of the 10 handwritten documents, a complete set of truth, comprising
of the alphabet sequence, meaning, and the pronunciation in that document, was
also given. The scanned handwritten documents’ word images were mapped with
the corresponding truth information.

9.2 Experiments

To test the combined method, 32 queries were issued on 13,631 records. The
neural network was trained on 300 such queries, 150 positive and 150 negative
query matches. All remaining records were used for testing. The combined score
comes to a score between −1 and 1. A negative score indicates a mismatch, and
a positive score a match. A 91% raw classification accuracy was observed.

Using five writers for providing prototypes and the other five for testing, using
manually segmented documents, 55% precision is obtained at 50% recall for the
word shape method alone. The character-based method achieves 75% precision
at the same recall rate. The combined method is consistently better, resulting in
about 80% precision. A comparison graph, with the word shape method using
five writers, is shown in Figure 3. One search result from CEDARABIC is shown
in Fig. 4.
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Fig. 4. Word Spotting Testing Results

10 Conclusion and Future Directions

Processing image and text based queries in parallel can result in higher per-
formance than either alone. The versatile search framework presented can ap-
ply to many document search problems. The example presented illustrates a
word spotting application, but other document search strategies may experience
similar performance increases. For example, a partially transcribed document
could be represented as a “bag of words,” with a term/document matrix. From
there, latent semantic analysis TF-IDF (term frequency-inverse document fre-
quency) weights can perform traditional searches, with image search augmenting
less than perfect transcription techniques. Furthermore, “plugging in” improved
image or text-based search algorithms can help increase overall performance.
For our experiments, we used the neural network to weight the two incoming
scores. However, features extracted from the images may improve neural network
performance.
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Abstract. In this paper we present a novel approach for the recognition of off-
line Arabic handwritten text motivated by the Arabic letters’ conditional joining 
rules. A lexicon of Arabic words can be expressed in terms of a new alphabet of 
PAWs (Part of Arabic Word). PAWs can be expressed in terms of letters. The 
recognition problem is decomposed into two problems to solve simultaneously. 
To find the best matching word for an input image, a Two-Tier Beam search is 
performed. In Tier One, the search is constrained by a letter to PAW lexicon. In 
Tier Two, the search is constrained by a PAW to word lexicon. The searches 
are driven by a PAW recognizer.  

Experiments conducted on the standard IFN/ENIT database [6] of handwrit-
ten Tunisian town names show word error rates of about 11%. This result com-
pares to the results of the commonly used HMM based approaches. 

1   Introduction 

The recognition of handwritten text in images, commonly known as offline handwrit-
ing recognition, still presents a challenging task. Significant work remains before 
large scale commercially viable systems can be built. This is truer for Arabic (and other 
non-Latin scripts in general) than Latin scripts, because less research effort has been put 
into solving the problem.  

Most research in Arabic offline recognition has been directed to numeral and single 
character recognition [1]. Few examples exist that address the offline recognition of Ara-
bic words problem [5]. The availability of standard publicly available databases of hand-
written Arabic text images like IFN/INIT database has encouraged more research [5] [9]. 

For Latin scripts, HMM (Hidden Markov Model) based approaches have dominated 
the space of offline cursive word recognition [10] [1]. In a typical setup, a lexicon con-
strains the output of the recognizer. An HMM is then built for every word in the lexicon, 
and the corresponding likelihood (probability of data being generated by the model) is 
computed. The most likely interpretation is then postulated as the correct one. 

In the few reported approaches to Arabic recognition, they used methods very simi-
lar to the ones used for Latin [5]. Some attempts tried to modify the preprocessing and 
feature extraction phases to accommodate the different nature of the Arabic script. 
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However, the author is unaware of any attempts, to this date, to exploit the unique 
properties of Arabic script for recognition purposes or to build systems inspired by the 
distinct nature of the Arabic handwriting. 

In this work, we present an approach that exploits a key (yet often ignored) prop-
erty of the Arabic writing script in building a recognition system. This property is 
basically the set of conditional joining rules that govern how Arabic letters connect in 
cursive writing. In Section 2, we show how this property leads to the emergence of 
PAWs and how our approach exploits these to build a two-tier recognition system. In 
Section 3, we describe our recognition system in details. Section 4 reports the experimen-
tal results conducted on the publicly available IFN/ENIT database of handwritten Tuni-
sian town names and how these compare to the results reported using alternative  
approaches.  

A system built based on the approach described in this paper was submitted as an en-
try to the ICDAR05 Arabic word recognition competition [7]. The system was evaluated 
as the second best system on a blind test set and the best system on the non-blind test set. 
Further developments to the system were also done after the competition. The au-
thor provides remarks on the competition and the effect of the inconsistency  
between the training and test set distribution. 

2   Exploiting the Arabic Writing System 

Arabic (arabī) is the fourth or fifth most widely-spoken language in the world. It is 
spoken by close to 300 million people mostly living in North Africa and South West 
Asia, and is the largest member of the Semitic branch of the Afro-Asiatic language 
family [11].  

Arabic script has a distinct writing system that differs significantly from the com-
monly known Latin or Han-based writing systems. Below, a brief history describes 
the writing system and how one of its unique properties has been exploited to build an 
offline word recognition system. 

2.1   The Arabic Writing System 

The Arabic script evolved from the Nabataean Aramaic script. It has been used since 
the 4th century A.D., but the earliest document, an inscription in Arabic, Syriac,  
and Greek, dates from 512 A.D. The Aramaic language has fewer consonants than 
Arabic, so, during the 7th century, new Arabic letters were created by adding dots to 
existing letters to avoid ambiguities. Further diacritics indicating short vowels were 
introduced, but in general are used only to ensure text (like the Qur'an) is read aloud 
without mistakes [12].  

The Arabic alphabet is written from right to left and is composed of 28 basic letters. 
Adaptations of the script for other languages, such as Persian and Urdu, have additional 
letters. No difference exists between written and printed letters; the writing is 
UNICASE (i.e. the concept of upper and lower case letters does not exist).  
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(b)
Isolated final form 
of the same letter 
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joining letter 

(a)
Final form of a 

letter following a 
joining letter 

 

Fig. 1. An illustration of the conditional joining property in Arabic script 

 
The Arabic script is cursive, and all primary letters have conditional forms for 

their glyphs, depending if used at the beginning, middle, or end of a word. Up to four 
distinct forms (initial, medial, final, or isolated) of a letter might be exhibited [4]. 

However, only six letters (و ز ر ذ د) have either an isolated or a final form and do 
not have initial or medial forms. If followed by another letter, these six letters do not 
join with it, and so the next letter can only have its initial or isolated form despite not 
being the initial letter of a word. This rule applies to numerals and non-Arabic letters 
as well. This property is often referred to as conditional joining. Figure 1 shows an 
illustration of this property.  

The conditional joining property leads to the emergence of PAWs (Part of Ara-
bic Word). A PAW is a sequence of Arabic letters joined together with no excep-
tions. Given an Arabic word, it can be deterministically segmented into one or 
more PAWs. 

It is worth noting that an Arabic writer must strictly abide by the conditional join-
ing rule. Otherwise, the handwriting may be deemed unreadable. However, due to 
sloppiness in writing or image acquisition conditions, PAWs may be physically con-
nected in an image. We empirically estimate that this happens in less than 5% of the 
overall PAW population. In Section 3.4, we will explain our approach for handling 
these cases. 

2.2   A Two-Tier Approach 

Given the conditional joining property of the Arabic writing script, words can be seen 
as being composed of a sequence of PAWs. In other words, PAWs can be considered 
an alternative alphabet. The unique number of PAWs constituting a word lexicon 
grows sub-linearly with the number of words in the lexicon. Figure 2 shows how the 
number of unique PAWs increases with the size of an Arabic lexicon. 
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Fig. 2. The number of unique PAWs in a lexicon grows sub-linearly with the number of words 
 

A lexicon of Arabic words can then be decomposed into two lexica. The first is a 
PAW to letter lexicon, which lists all the unique PAWs and their spelling in terms of 
the letter alphabet. The second is a word to PAW lexicon that lists all the unique 
words and their spelling in terms of the PAW alphabet. 

Consequently, the problem of finding the best matching lexicon entry to an image 
can be decomposed into two intertwined problems to solve simultaneously. The first 
problem lies in finding the best possible mapping from characters to PAWs, con-
strained by the first lexicon. The second problem is finding the best possible mapping 
from PAWs to words, constrained by the second lexicon. 

This two-tier approach has a number of useful properties. In one property, lexicons 
constrain the outputs of the recognition process, so a number of character recognition 
errors can be remedied in the PAW recognition phase. Figure 3 shows an example of 
this type of potential recognition error. It is unlikely, in this example, that the second 
letter “ص” would have been proposed by a character recognizer given the poor 
condition of the handwriting.  

 

Fig. 3. An example image of the لصغر PAW can be confused with لعخر, which is a valid lexicon 
PAW  
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In another property, PAWs ultimately have their own prior probability distribution 
that can be utilized by the PAW recognizer to favor more frequently occurring PAWs. 
These prior probabilities can be viewed as a linguistic n-gram character model, which 
drives the recognition process. 

3   The Recognition System 

A block diagram of the two-tier recognition system is shown in Figure 4. In the following 
sections, we will describe the pre-processing, normalization, segmentation, recognition, 
and search steps in detail. 

 

Fig. 4. A block diagram of the recognition system 
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3.1   Preprocessing, Normalization and Segmentation 

The images in the IFN/ENIT database already passed through the basic processing of 
image binarization, cropping, word segmentation, and noise reduction; so we have 
skipped these phases in our experiments. The first step of processing detects con-
nected-components. Connected-components whose width and height are below a cer-
tain threshold (which is not a critical choice) are obtained. This threshold has been 
determined empirically throughout the experiments. This step acts as an additional noise 
reduction step. Connected-components are then sorted from right to left, based on their 
right-most point. This allows the search algorithm to sequence through the connected-
components in an order close to the writing order. 

Connected-components are then labeled as ‘primary’ and ‘secondary’. This labeling is 
performed by detecting relative horizontal overlaps between connected-components and 
applying safe thresholds on connected-component sizes. Each secondary connected-
component must be associated to a primary one. No secondary component can exist 
alone. Figure 5 shows the grouped connected-components in an image of a word. Each 
group of connected components contains one primary and one or more secondary con-
nected components.  

In 5(a), each connected-component group corresponds to exactly one PAW. We have 
empirically determined that this case represents 65% of the overall population of words. 
Figure 5(b) shows how the two connected component groups correspond to one PAW 
(i.e. the over-segmentation case). Over-segmentation represents 30% of the word 
population. Figure 5(c) shows how the purple connected component-group is actually 
 

(a) 

(b) 

(c) 

Fig. 5. Three examples of grouped connected-components. (a) The connected-component group 
is an actual PAW. (b) The PAW was split into two connected-component groups. (c) The 
PAWs joined into one connected-component group (purple color). 
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two touching PAWs. This case is not inherently handled by the proposed approach. It 
constitutes 5% of the cases. We will explain in Section 3.4 how it was handled. As 
such, a fundamental assumption of the following steps of the system is that PAWs can 
only occur on connected-component group boundaries. 

3.2   The PAW Recognizer 

The IFN/ENIT database has a lexicon of 946 Tunisian town names, with 762 unique 
PAWs in this word lexicon. Although the training database may not necessarily con-
tain at least one sample of each valid word, it appears that at least one sample is  
present of every valid PAW. 

Because the relatively low number of unique PAWs, it was decided to use a Neural 
Network based classifier to recognize PAWs. As the size of the word lexicon in-
creases along with the number of valid PAWs, it might be impractical to use a Neural 
Network classifier directly for recognizing PAWs. 

In our experiments, we build two Neural Net PAW classifiers. The first classifier is 
a convolutional Neural Network. Convolution Neural Networks [8] have been re-
ported to attain the best accuracy in offline handwritten digits. In this type of net-
works, the input image is scaled to fit a fixed size grid while maintaining its aspect 
ratio. Since the number of letters in a PAW can vary from 1 to 8, the grid aspect ratio 
must be wide enough to accommodate the widest possible PAW while still maintain-
ing its distinctness. The second classifier is based on features extracted from the di-
rectional codes of the connected-components constituting the PAW. Each of these 
two classifiers has 762 outputs and trained with sets that reflect the prior distributions 
of PAWs in the word lexicon. 

PAWs can exist at the start, middle and final position in a word, and a PAW can 
constitute an entire word. We’ll refer to this as the isolated position. Figure 6 shows 
example PAWs at each of the four possible positions.  

 
 

 

Fig. 6. PAWs at start, middle, and final positions in the word 
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Each unique PAW does not necessarily exist at all possible positions within a word: 
start, middle, final, isolated, so it was determined that building a separate classifier for 
each possible position improves PAW recognition accuracy significantly. 

3.3   Beam Search 

As mentioned above, the word lexicon can be decomposed into two lexica: letter to 
PAW lexicon and a PAW to word lexicon. The letter to PAW lexicon constrains the 
output of the PAW recognizer as mentioned above. The PAW to word recognizer 
constrains the search for the best matching word. 

Beam search is an algorithm that extends the well known best-first search algo-
rithm. Like a best-first search, it uses a heuristic function to evaluate the promise of 
each node it examines. Beam search, however, only unfolds the first m most promis-
ing nodes at each depth, where m is a fixed number, the "beam width". It is commonly 
used in speech recognition [2]. 

The Beam search finds the best matching word to an image, using the output of PAW 
recognizer as a search heuristic. The search algorithm sequences through the connected-
components groups and considers either starting a new PAW or adding the group to the 
existing PAW. The search retains the list of possible PAWs, with their corresponding 
posterior probabilities produced by the PAW recognizer. Different connected-component 
group to PAW mappings remain in a lattice of possible segmentations. After sequencing 
through all the groups, the best possible segmentation is evaluated and chosen as the 
winning hypothesis. 

 

Fig. 7. An recognition example showing the word recognition results in the top list and the 
PAW recognition results in the lower list boxes 
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For practical reasons and to ensure that the segmentation possibilities in the lattice do 
not explode, two heuristics apply. First, the maximum number of connected-component 
groups per PAW is capped at four. This number has been determined empirically based 
on the training data. Second, at every step in the lattice, segmentation possibilities with a 
probability lower than the most probable segmentation, determined by a certain thresh-
old, are pruned. This means that, theoretically, the Beam search may not produce the 
most probable segmentation. However, this rarely happens in practice. 

Figure 7 shows an example image, the final recognition results, and the PAW  
recognition results of the two connected-component groups. Note that, although the 
second PAW was misrecognized, the overall word was correctly recognized. 

3.4   Handling Exceptions 

As noted earlier, the under-segmentation case was empirically determined to constitute 
approximately 5% of the words. To handle the under-segmentation problem, where 
more than one PAW becomes segmented as one connected-component group, a final 
step was added to the process. The final step triggers if the probability of the winning 
segmentation path in the lattice is lower than a certain threshold. This was found to be 
strong evidence that under-segmentation had occurred. When triggered, a Viterbi search 
is performed on the individual PAW recognition results of the connected-component 
groups. In this search, the edit distance between the each of the PAW to Word lexicon 
and the recognition results are computed. Both PAW insertions and deletions are  
allowed, with a penalty associated with each. 

 

Fig. 8. A recognition example of an under-segmented image. The Viterbi search that is trig-
gered when the best Beam result is lower than a certain threshold produced the correct answer. 

4   Experiments 

4.1   The Data Set 

Experiments were conducted on the publicly available IFN/ENIT database [6]. The 
database is split into four sets A, B, C, and D. The four sets contain 26,459 images of 
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segmented Tunisian town names handwritten by 411 unique writers, with 115,585 
PAWs. The ground truth information is available. Unique word labels number 946, 
and they are 762 for each image. 

Sets A, B, and C were used for training and validation. Set D was used for evaluation. 
Set D has 6,735 words handwritten by 104 unique writers, none of which contributed any 
words in sets A, B or C.  

In a widely agreed upon rule of thumb in building recognition systems, recognizers 
are evaluated on a distribution similar to the training set. The four sets have roughly the 
same writer demographics, word distribution and, consequently, PAW distribution, so 
our experiments upheld this rule. 

4.2   The Training Process 

One problem encountered during implementing the recognition system was obtaining 
data to train the PAW recognizer. As such, the database has word-level ground truth 
information, but not PAW-level ground truth information.  To solve this problem, we 
followed a bootstrapping technique similar to the bootstrapping from incomplete data 
in the well-known Expectation-Maximization EM setting [3]. 

As mentioned in Section 3.1, our connected-component segmentation and grouping 
algorithm results in three different types of segmentation. We call for the first type, exact 
segmentation, where each of the resulting connected-component groups corresponds to 
one, and exactly one, PAW. Empirically, it was determined that exact segmentation cases 
constitute 65% of the total word population.  

The number and the identity of the PAWs that constitute the sample’s word label 
can be computed for each training sample. To bootstrap the training process, a conjec-
ture is made that for every sample in the training set where the number of connected-
component groups is equal to the number of label PAWs, the identity of a specific 
PAW corresponds to the ground truth label of the connected-component group at the 
same position. This conjecture holds almost all the time. Rare cases exist where PAW 
over-segmentation and under-segmentation occur an equal number of times in a word, 
which results in breaking the exact segmentation conjecture. 

As a first step, the PAW recognizers are trained on all the samples that satisfy the 
exact segmentation conjecture, which is 65% of the training data. In subsequent steps, 
by using the ground truth word label and its corresponding PAWs, the PAW recog-
nizer trained in the previous step segments connected-component groups into PAWs. 
This happens by running the same algorithm described in Section 3 with only one 
entry in the word lexicon: the ground truth. This could work only for exactly under-
segmented and over-segmented words. So, the under-segmented words, which consti-
tute 5% of the training set, are excluded from the training process. The training step is 
analogous to the maximization step in EM, while the PAW re-segmentation phase is 
analogous to the expectation step. This sequence (training, re-segmentation) was re-
peated three times until no significant change in the accuracy of the PAW recognizer 
occurred. 

4.3   PAW Recognition Results 

The results of the two individual PAW recognizers and their combined results are 
shown in Table 1. 
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Table 1. The error rates of the individual PAW recognizer and the combined PAW recognizer 
on set D of the IFN/ENIT database 

Recognizer Top 1 
Errors  

Top 10 
Errors 

Convolutional 
Net  

40.13% 12.31% 

Directional 
Codes  

32.4% 11.77% 

Combined 
Classifier 

19.98% 8.9% 

 

4.4   Word Recognition Results 

Table 2 shows the error rates for the overall word recognizer, as measured on set D of 
the IFN/INIT database.  It also gives the results broken down by the type of segmen-
tation encountered in the image. 

Table 2. The error rates of overall word recognizer 

Data subset Top 1 
Errors  

Top 10 
Errors 

All data  11.06% 4.99% 
Exact
Segmentation  

7.11% 1.67% 

Over-
Segmented 

13.33% 4.39% 

Under-
Segmented  

36.03% 36.03% 
 

5   Conclusion 

In this paper we have presented a novel approach to the recognition of lexicon-
constrained Arabic handwritten words. The approach exploits the conditional joining 
of letter properties in Arabic writing to decompose the problem into two problems to 
solve simultaneously. Using a Neural Network based PAW recognizer; a two-tier 
Beam search finds the best matching word to the input image. Word error rates of 
around 11% were achieved on the publicly available IFN/ENIT database. These re-
sults compare favorably to the results reported on the same set using an alternative 
HMM based approach [5]. 

5.1   The ICDAR05 Competition 

The same results were also reported as part of the ICDAR05 Arabic handwritten word 
recognition competition report. A system that implements the presented approach 
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ranked as the second best entry on the blind-test (whose results are not reported here 
since the author has no access to it) and the best entry on the non-blind test set (set D). 

It is worth noting that the blind set had a different distribution of words than all 
published sets A, B, C, and D of the database. This, in turn, resulted in an unexpected 
PAW prior distribution. This may explain why the error rate reported on the blind 
reported set significantly higher than the non-blind set. The author holds the opinion 
that the competing recognizers should have been evaluated on a distribution similar to 
the training set.  
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Abstract. The great success and high recognition rates of both OCR
systems and recognition systems for handwritten words are unconceiv-
able without the availability of huge datasets of real world data. This
chapter gives a short survey of datasets used for recognition with special
focus on their application. The main part of this chapter deals with Ara-
bic handwriting, datasets for recognition systems, and their availability.
A description of different datasets and their usability is given, and the
results of a competition are presented. Finally, a strategy for the develop-
ment of Arabic handwriting recognition systems based on datasets and
competitions is presented.

1 Introduction

Machines are still far from being able to read as humans can. Nevertheless,
automatic reading of printed text has reached a high level in many languages
and applications, e.g. address reading and check reading. Powerful computers
allow the execution of efficient recognition algorithms without special hardware.
A gap still to be filled, however, for languages that do not use Latin characters.
One such language is Arabic, spoken by more than 230 million people as the
official language in 25 countries.

We will not go into details of Arabic writing style, but refer the reader unfa-
miliar with Arabic to [1] and [2]. The cursive style of even printed Arabic makes
the segmentation into characters difficult, and the extensive use of diacritics
demands special methods of feature extraction and normalization. Therefore,
systems developed for Latin character-based OCR cannot be adapted easily to
Arabic.

To date most successful methods for OCR and cursive script recognition
are statistical methods, e.g. approaches based on Neural Nets (NN) or Hid-
den Markov Models (HMM). Like all methods based on statistical approaches,
they require a huge amount of data to adapt their parameters to the intended
application.

D.S. Doermann and S. Jaeger (Eds.): SACH 2006, LNCS 4768, pp. 82–103, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Another crucial aspect for recognition system development is the discussion
and competition of different approaches. Only the testing of different methods
on identical datasets allows for informative comparison. Furthermore, objective
quality measuring methods are necessary for ranking the systems. This also
constitutes a high motivation for developing advanced methods.

This chapter gives a survey of datasets, competitions, and evaluation tools
necessary to improve recognition systems, in general, and Arabic handwritten
text recognition in particular. The chapter is organized as follows: In Section 2
a short survey of existing datasets, competitions and evaluation tools for non-
Arabic text is given. This section focuses on those parts of non-Arabic recognition
systems that can be used to train Arabic text recognition. Even though many
elements of recognition systems are unique and independent of the language,
some language dependent special properties exist which are discussed in this
section. Section 3 describes the state of the art of existing datasets of Arabic
handwritten words in some detail, followed by Section 4, which presents systems,
methods, and results of the first competition of Arabic handwriting recognition.
Section 5 discusses several aspects important for the further development of
Arabic handwriting recognition, as summarized in Section 6.

2 Datasets for Text Recognition

The first approaches for automatic character recognition were developed in the
beginning of the 1930s, using simple pattern matching methods on selective
characters. Special, easy-to-read fonts were designed for the automatic reading
on bank forms. In the 1960s, mail sorting machines could read printed text on
envelopes. A veritable leap forward happend in the 1990s, when huge datasets
became available to the research community [3], allowing the development of
statistical methods for OCR systems. Another reason for the progress in the
1990s were annual competitions of OCR accuracy, such as the workshops at the
Information Science Research Institute (ISRI), University of Nevada (e.g. [4]).
Along with these developments came as a third important aspect, the develop-
ment of methods for measuring and comparing the quality of recognition systems
(National Institute of Standards and Technology (NIST) [3] and ISRI [4]).

This work was highly successful. Powerful OCR systems were realized and use-
ful methods developed. However, it became clear that collecting and labelling
data is not only an important task but also an expensive one. Commercial com-
panies tend to exploit their own advantage rather than accelerate development
by encouraging competition, making independent funding crucial.

Fortunately, just as OCR development attracted independent support, public
funding also became available for the development of handwritten character
and word recognition systems. Driven by the need of check reading and postal
sorting machines, real world data were made available, e.g., by CEDAR [5].
NIST made available not only data for system development, but also recognition
software as a benchmark for future methods. Thus, it was possible to develop and
test parts of recognition systems separately, such as a character recognizer or a
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word-to-character segmentation method. By not having to develop entirely new
systems every time, researchers could focus on a particular aspect, significantly
facilitating development.

2.1 Synthetic and Artificial Data

The expense of collecting and preparing data for building and optimizing OCR
systems resulted in various cost-cutting efforts. One idea was to avoid scanning
and labeling of printed text by generating synthetic data [6]. While this approach
provides cheap datasets for testing and developing statistical recognition meth-
ods, it is clear that a system developed with synthetic data must be retrained
before being employed in a real world environment. Concerning handwriting,
the development of specially designed forms for collecting artificial data made
data preparation for training and testing quicker and cheaper. However, many
research groups used this method to build small datasets of their own, resulting
in recognition tests performed on these diverse datasets being incompatible with
results of other research groups, who used different datasets.

2.2 Competitions

Testing recognition systems with large identical datasets is crucial for perfor-
mance evaluation. Another challenge comes from their complexity, because they
consist of many specialized parts solving very diverse tasks. The recognition rate
is a convenient measure for comparing different systems, but it is a global pa-
rameter hardly significant for system component development. To improve the
overall system quality, it is essential to know the effectiveness of its modules.

The development of meaningful aspects of system evaluation methods was an
important part of the aforementioned annual OCR tests at ISRI. The goal of
these tests not only publicized the state-of-the-art of page reading systems, but
also provided information for improvement through competition and objective
assessment. While much has been achieved concerning the evaluation problem
(e.g. [7]), the availability of tools and data remains an issue for research, as
discussed in the paper [8], published in 2005. For example, it is not enough
to measure the quality, based on the symbol output of the recognizer, only by
considering the word accuracy. The quality of zoning and the segmentation into
words or characters represent an important feature of a recognition system,
and should be evaluated too [9]. A more general concept for evaluating system
modules separately is presented in [10].

2.3 Requirements on Arabic Datasets

Text recognition for Arabic printed or handwritten words faces the same chal-
lenges, to a large degree, as text recognition for Latin character based languages.
Given the fundamental differences of the characters and the writing style, some
additional features must be considered. In addition to the difference in writing
direction, line by line from right to left, the connection of the printed characters
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differs greatly between Arabic and e.g. English. It is interesting to note that
the Arabic set of 28 characters results in 100 different character shapes because
most characters can appear in four different shapes depending on the position
of the character in a word (isolated, beginning, middle, and end), but capital
letters are not known. This numbers approximately twice the amount of the En-
glish character set, given the 52 different character shapes of English, including
capital letters.

The connectedness of the Arabic printed characters necessitates a more com-
plex segmentation of a word into characters. Moreover, points and other diacritic
marks, which are positioned above or below the main character shape, are parts
of the characters.

These characteristics of Arabic require a special structure of the dataset de-
signed for training and testing Arabic recognition systems. In addition to these
characteristics of printed Arabic, Arabic handwriting has even more differences,
which increases the difficulty of the construction of a dataset and recognition pro-
cess. Fig. 1 gives an example of a handwritten address, written with Latin and
Arabic letters. An apparent difference can be seen, with less regularity in the text
written with Arabic compared to the text written in Latin characters. Table 1
shows examples of handwritten Arabic words with marked characteristics.

These examples show fundamental differences in the writing of Arabic words
compared to English. As writing styles of English differ around the world, the
writing style of Arabic also differs from country to country. A critical point is
that the way of using ligatures differs particularly.

Fig. 1. Example of a handwritten address written in Latin and in Arabic
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Table 1. Examples of some typical features of Arabic handwritten words

Example Description

Consecutive letters within a word are typ-
ically joined together by a baseline stroke

Characters are often stretched through
lengthen the connecting line

Ligatures replace particular character
pairs or even triples

Diacritical mark ”Chadda” is used to in-
dicate short vowels or as special form of a
character

The baseline is needed for the recognition,
but sometimes difficult to find

Datasets with Arabic text or words must consider these characteristic fea-
tures. As a result, special labels are assigned, and the amount of differently
shaped characters is considered in the incorporation of different words by differ-
ent writers into the datasets.

3 Datasets of Arabic Text

As noted in Section 2, datasets of typical printed or handwritten words yield the
most important part in a recognition system design. Papers on Arabic printed
or handwritten word recognition have been published for many years. The first
paper on Arabic OCR dates to 1975, the first Arabic OCR system was made
available in the 1990s. However, only three papers comparing OCR systems have
been published to date, and the newest one is seven years old [11]. To overcome
the problem of the lack of large datasets for developing Arabic OCR systems, and
to motivate the research on statistical methods, a system for synthetic generation
of Arabic datasets was developed according to the approach of English OCR [12].
This allows for fast and simple generation of large datasets.

The situation is no better for Arabic handwritten word recognition. For many
years the work published about Arabic handwriting recognition has used small,
private datasets, which makes a comparison of methods essentially impossi-
ble. Another disadvantage lies in the fact that these private datasets are of-
ten too small for reasonable statistical methods. Only a few datasets have been
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published. Recently, an overview about the state of the art of Arabic offline
handwriting recognition was given [1].

In the following, datasets of Arabic words or text are discussed. It must be
mentioned that databases presented in papers and used for experiments are
often not publicly available. The current availability of the following datasets is
mentioned in each section.

3.1 ERIM Arabic Document Database

The Environmental Research Institute of Michigan (ERIM) created a database
of machine-printed Arabic documents. These images, extracted from typewritten
and typeset Arabic books and magazines, contain a wide variety of fonts and
ligatures with quality ranging from poor to good. All images were collected at 300
dpi. This database provides a training and testing set for Arabic text recognition
research. The following details are given on the ERIM web site [13].

Database specifications:

– over 750 pages of Arabic text
– all data digitized on 300 dpi flatbed scanner
– grayscale page images available for some pages
– all character information stored as Unicode
– approximately 1,000,000 characters
– truth for characters, as well as ligatures
– over 200 distinct Arabic ligatures
– a wide variety of fonts and data quality
– divided into Training, Statistic, and Test sets
– image format documentation included

Together with the image data, truth files are provided. All this sounds promis-
ing, but it was impossible to acquire the database. Apparently the data is un-
available today.

3.2 Al-Isra Database

In a paper at the IEEE Canadian Conference on Electrical and Computer Engi-
neering [14], a database of handwritten Arabic words, numbers, and signatures
is described. The data were collected at the Al-Isra University Amman, Jordan.
Five hundred randomly selected students contributed handwritten data to the
database.

The database consists of:

– 37,000 Arabic words,
– 10,000 digits (Arabian and Indian),
– 2,500 signatures, and
– 500 free-form Arabic sentences,

all saved in grayscale and black and white BMP file formats. The database was
announced in 1999, but until now no data has been published on the internet.
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3.3 CENPARMI Database

At the IWFHR workshop 2000 in Amsterdam, the Center for Pattern Recogni-
tion and Machine Intelligence (CENPARMI) in Montreal presented a database
of images from 3,000 checks provided by a banking cooperation [15]. These are
images of real, used checks, and the words of the legal amount have been seg-
mented and labeled with an ASCII code sequence for each subword (called PAW
= connected Part of an Arabic Word). Also, the courtesy amount in Indian
digits has been segmented and labeled. The data are divided into training and
testing sets. The database contains 29,498 subwords, 15,175 digits, and 2,499
legal and courtesy amounts.

Fig. 2. Example of a check from CENPARMI database

Fig. 3. Examples of legal and courtesy amounts from CENPARMI database

Figures 2 and 3 show examples from the CENPARMI database. The advan-
tage of this database lies in its availability and the real world data that were
collected. The disadvantage comes from some subwords being under-represented,
so a training of a statistical recognizer becomes severely restricted.

3.4 IFN/ENIT-Database

At the CIFED Conference in 2002, the Institute for Communications Technology
(IfN) at Technical University Braunschweig, Germany, and the Ecole Nationale



Databases and Competitions 89

d’Ingeniéurs de Tunis (ENIT), Tunisia, presented a database with handwritten
Tunisian town names [16]. This dataset was collected on specially designed forms
to make the labeling procedure as simple as possible.

The aim was to collect images of handwritten town names written in a similar
quality to town names in an address on a letter. The form was designed to:

– encourage writing without strong constraints,
– collect writing similar to writing on a letter,
– be easy to process automatically, and
– provide additional information about the person who completed it.

A filled example of the devised form appears in Fig. 4. The form consists of
three columns and a text block at the bottom. A column on the right hand
side of the form lists 12 lines with printed Tunisian town/village names and
their respective postcodes, which are automatically selected from the possible
937 names. The sample writers were expected to write the postcode in the left
column and the town/village name in the middle column in their individual
writing style. Writers had neither a writing line nor a box in which to write,
because the processing of the scanned data should be as simple as possible. To
provide a light writing guidance, black rectangles were printed on the backside
of each page, which mark where to write. In the scanning process, these rectan-
gles can be removed using a simple threshold. Further segmentation operations
are unnecessary. The names printed on each form were selected randomly with
the condition that each character shape should occur at least 200 times. There-
fore, those names with rare character shapes occur more often than names with
frequent ones. Each word appears at least three times in the database. A page
number provides a form identifier for the subsequent processing. The block at
the bottom gives additional information about the age, profession, and identity
of the writer. Each writer was asked to complete five forms, with each writing
60 names.

The database (www.ifnenit.com), in version v1.0p2, consists of 26,459 hand-
written Arabic names by 411 writers. 937 Tunisian town/ village names are
written. Each writer filled some forms with pre-selected town/village names
(referred to as ”names” in the following) and the corresponding post code.
Ground truth was added automatically to the image data and verified manually.
Table 2 shows a dataset entry of the IFN/ENIT-database.

This database has an interesting feature in the detailed labeling of the post-
code as a label on word level. The character shape sequences, where each char-
acter shape depends on its position in the word, receives different labels for
each position. Additionally, the position of the baseline is given as straight line.
All this information, together with some additional quality measures, have been
verified manually several times. The label information allows to train and test
recognition systems, either on word or on character level. The given baseline
position can be used for the testing of baseline estimation algorithms and the
dependency on the baseline accuracy.
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Fig. 4. An example of a completed form

Table 3 shows some image examples from the IFN/ENIT-database. Tables
4-6 show important statistics of the IFN/ENIT-database. Table 4 shows the
quantities of names, PAWs, and characters subject to the number of words in
a name. It can be seen that in most cases the name consists of one word, but
some names also appear with four words. The overall number of words in the
database is 42,609.

Table 5 presents statistics of the number of PAWs in the names of the
database.

Table 6 gives statistics of the age and the profession of the writers who con-
tributed to the database.
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Table 2. A data set entry of the IFN/ENIT-database. The symbols M, B, A, E rep-
resent the used character shapes (middle, begin, alone, end position in a word.)

Image

Ground truth:
Postcode 3070

Global word
�� �������

Character shape sequence
�� B|	 E| �� B| �
 M| �� E|

Baseline y1,y2 77,83

Baseline quality B1

Quantity of words 1

Quantity of PAWs 2

Quantity of characters 5

Writing quality W1

Table 3. Examples from the IFN/ENIT-database: A Tunisian village name written by
12 writers

3.5 ARABASE Database

In 2005, a relational database for Arabic OCR systems was presented by N. Ben
Amara, et al. [17]. The authors claim to have conceived a database to support
research for online and offline Arabic handwritten and printed text recognition.
All types of images of text phrases, signatures, words, characters, and digits
are supposedly included in the database. Also, tools to use the database were
announced. To date, only the concept has been presented.
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Table 4. Quantity of words, name images, PAWs, and characters in a name

words in a name names PAWs characters

1 12,992 40,555 76,827
2 10,826 54,722 98,828
3 2,599 20,120 36,004
4 42 188 552

Total 26,459 115,585 212,211

Table 5. Frequency of PAWs in a name

Number of PAWs frequency in %

1 2.99
2 15.35
3 17.60
4 24.84
5 14.67
6 8.24
7 7.32
8 6.04

>8 2.95

Table 6. Age and profession of the writers

age student teacher technician other
∑

≤20 29% 0% 0% 0% 29%
21 - 30 35.6% 4.2% 3.9% 3.9% 47.6%
31 - 40 0.2% 3.4% 4.9% 2.0% 10.5%
> 40 0% 4.1% 5.4% 3.4% 12.9%
∑

64.8% 11.7% 14.2% 9.3% 100%

4 Competitions of Arabic Handwriting

Table 7 presents an overview of the databases of Arabic printed or handwritten
words, which were presented in Section 3. Today, only the two bold-printed
databases are available for research on Arabic handwriting recognition. Even
though more datasets exist, they are not available for public research. It is clear
that a considerable lack of databases exists for developing Arabic handwriting
recognition systems.

The insights derived from the work done on OCR and handwriting recognition
methods and systems for Latin character based languages in the past showed that
datasets and competition are the most important prerequisites for developing
recognition systems.
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Table 7. Databases for Arabic text recognition

Name Year Contents Type Reference

ERIM 1995 750 pages printed [13]
Al-Isra 1999 37,000 words handwritten [14]

10,000 digits
CENPARMI 2000 2,499 amounts handwritten [15]

2,499 numbers
IFN/ENIT 2002 26,459 names handwritten [16]
ARABASE 2005 ? printed/handw. [17]

More than 30 research teams today employ the IFN/ENIT-database, pub-
lished in 2002. This fact motivated the organization of a competition on Arabic
handwriting recognition during the ICDAR 2005 conference. The groups working
with the IFN/ENIT-database already were especially asked to submit a recog-
nition system.

4.1 ICDAR 2005 Competition

The first competition on Arabic handwriting recognition was based on the IFN/
ENIT-database, and the results were presented at the International Conference
on Document Analysis and Recognition (ICDAR ) 2005. The participating sys-
tems were developed using the data of the IFN/ENIT-database and sent to the
IfN. All tests were conducted at the IfN, and five groups submitted systems to
the competition.

4.1.1 Participating Systems
A short overview of the systems participating in the competition is given in the
following.

System ICRA. The system, named ICRA (Intelligent Character Recognition for
Arabic), which also means read in Arabic, was developed by Ahmad Abdulkader.
Here is a short description of the system:

– The system uses a novel idea inspired by the nature of Arabic writing, based
on the concept of the PAW.

– ICRA is a two tier recognizer.
– The 1st tier is a Neural Net based PAW recognizer aided by a PAW lexicon.

The PAW lexicon is extracted from the master village names lexicon.
– The 2nd tier is a Neural Net based word recognizer aided by another lex-

icon. The literals (alphabet) of such a lexicon are actually PAWs and not
characters.

– ICRA was trained on sets a, b, and c and tested on set d of the IFN/ENIT-
database.

– The main approach of the system was published at IWFHR 2006 conference
[18].
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System SHOCRAN. The SHOCRAN system (System for Handwritten Optical
Character Recognition for Arabic Names), comes from a group of researchers
in Egypt. It is declared as a confidential project, so no information about the
system is available. The system is trained on all four datasets of the IFN/ENIT-
database.

System TH-OCR. The TH-OCR system was developed at the State Key Lab-
oratory of Intelligent Technology and Systems, Department of Electronic Engi-
neering, Tsinghua University, Beijing, China, by Pingping Xiu et al.

Based on previous research work on a multilingual document recognition sys-
tem for Chinese, Japanese, Korean, English, Tibetan, and Uyghur languages, this
research work extended to Arabic OCR. The first step was the development of a
printed Arabic document recognition system in 2004 [19]. The system structure
of the handwritten Arabic OCR system is similar to that of the printed Arabic
OCR system, but the key technologies of handwritten character segmentation
and recognition are more complex and sophisticated. The character recognition
module uses mainly statistical pattern recognition methods.

System UOB. The UOB system was developed at the University of Balamand,
Lebanon by Chafic Mokbel and Ramy El-Hajj in tight collaboration with Lau-
rence Likforman-Sulem from ENST-Paris.

The UOB system is a pure HMM system developed for speech recognition
at the origin. It uses a complete toolkit like HTK [http://htk.eng.cam.ac.uk/],
which is called HCM. HCM permits the development of large HMM networks,
and it integrates language modeling. The properties of the HCM are published
in papers in the speech recognition area, e.g. [20]. A paper describing the feature
extraction module of the UOB system was presented at ICDAR 2005 [21]. For
the UOB system all four datasets were used for training. No confidence measure
has been implemented.

System REAM. The next system, REAM (Reconnaissance de l’Ecriture Arabe
Manuscrite), comes from a group at the Laboratoire des Systmes et de Traiment
du Signal-ENIT, Tunisia. The authors of the system are Sameh Masmoudi Touj,
et al.

The system uses a hybrid planar Markov Model to adapt to horizontal and
vertical variations of the handwritten word. The approach is presented in a jour-
nal paper [22]. The principal idea of this approach involves the partitioning of
handwritten words into five logical horizontal bands which correspond to typi-
cal Arabic parts of words like upper and lower diacritics, ascenders, descenders,
and median zone. This segmentation uses knowledge about the typical Arabic
writing style in a sophisticated way. Based on features of the median zone, ver-
tical segmentation points are detected. In the next step, a different technique of
feature extraction is adopted for each type of segment. Finally, the recognition
is realized using the concept of PHMM.
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Table 8. Recognition results in % with IFN/ENIT-database dataset d

System 1 1-5 1-10

ICRA 88.95 94.22 95.01
SHOCRAN 100 100 100
TH-OCR 30.13 41.95 46.59

UOB 85.00 91.88 93.56
REAM* 89.06 99.15 99.62

ARAB-IFN 87.94 91.42 95.62

* System did not run on all data. It is tested on a reduced set of 1000 names only.

4.1.2 Tests
The performance of the five Arabic handwriting recognition systems were eval-
uated in two steps. In the first step, the dataset d of the IFN/ENIT-database
was used. In the second step, the new and, unknown to all participants, dataset
e was used.

Results. The systems were first compared on the basis of dataset d of the
IFN/ENIT-database. Table 8 shows the results of the five systems in the com-
petition, and we added the results of our system (ARAB-IFN) for comparison,
which was presented at ICDAR 2003 [23] and trained on datasets a, b, and c.
While some systems used the whole IFN/ENIT-database for training, remark-
able differences between the performances of the five systems can be seen. The
first column shows the percentage of correctly recognized city names, the second
the percentage of correct results within the top five results, and the third column
of the top 10 results.

Table 9 shows the recognition results of the systems reached with the new and
unknown dataset e. The results of the SHOCRAN system and the REAM system
both show a highly reduced recognition rate. The ICRA and UOB systems show
a behavior with a slightly reduced recognition rate (comparable with the results
of the ARAB-IFN system). The TH-OCR system shows approximately the same
result as on the dataset d.

A comparison of the relative error rates of the different systems dependent
on the number of PAWs in a name is shown in Fig. 5. It can be seen that, for
all systems, the relative error follows generally the frequency of the PAWs in

Table 9. Recognition results in % with the new dataset e

System name No. 1 1-5 1-10

ICRA 1 65.74 83.95 87.75
SHOCRAN 2 35.70 51.62 51.62
TH-OCR 3 29.62 43.96 50.14

UOB 4 75.93 87.99 90.88
REAM* 5 15.36 18.52 19.86

ARAB-IFN 6 74.69 87.07 89.77

* System did not run on all data. It is tested on a reduced set of 3000 names only.
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Fig. 5. Relative errors of the systems dependent on the number of PAWs in a name.
In each group, the bars are associated with the systems 1-6 from left to right.

Fig. 6. Example of a town/village name written by different writers out of dataset e
and the recognition results (1 first correct, 2 second, . . . , - no correct result)

dataset e (Table 5). However, some systems show more errors in long words,
whereas others in short words. This may depend on the different features and
normalizations used.
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Fig. 6 shows some examples of a word written by different writers, with the
results of the recognition systems. It can be seen that some poorly written words
are correctly recognized with some systems, while better written words are still
not recognized. At first glance, systems without segmentation show better results
on words with connected or broken PAWs than those that segment.

4.2 ICDAR 2007 Competition

We have planned to perform a second competition on the IFN/ENIT-dataset at
ICDAR 2007. The dataset for training a system will be upgraded, with the test
dataset e from the competition ICDAR 2005, to improve training on word level,
as the words will be more equally distributed. Additionally, more features of the
systems will be measured, e.g., processing time and reject behavior.

5 Steps to Develop Arabic Offline Recognition Systems

The state of the art of Arabic offline handwritten word recognition as presented
in the previous sections demonstrates that work remains to be done to achieve
Arabic offline handwritten word recognition systems as effective as systems for
the recognition of English words.

One important next step to develop Arabic handwritten text recognition sys-
tems involves attaining modules equivalent to those needed for Latin-character-
based text recognition systems. The results of the first competition of Arabic
handwritten word recognition systems showed us that HMM-based recognizers,
known to be effective for cursive handwriting recognition, apply well to Arabic
handwritten word recognition. It seems clear that Latin character based cursive
handwriting has similar features - connected characters, different shape depend-
ing on the position in a word - as Arabic handwriting. Yet, the word recognizer
is only one part of an offline Arabic handwriting recognition system. A complete
system also needs document analysis components, for image preprocessing, docu-
ment segmentation, text block detection, line segmentation, word segmentation,
and baseline estimation. All these processing steps must be done on real world
documents, e.g. letters, bank transfer forms, and insurance forms. The competi-
tion at ICDAR 2005 was a first step in system development, because it concerned
only word recognition performance. A complete system takes as input the paper
document and performs all tasks from preprocessing to recognition automati-
cally. Finally, an optimized Arabic text recognition system needs to consider the
characteristics of the Arabic language, being its syntax and semantics.

5.1 Characteristics of Databases

The usefulness of a database depends on two main features: the data itself and
the structure of the ground truth. The data collection from a selected application
should be accomplished first. Before the expensive and time consuming labeling
process starts, a data structure for the ground truth and label information must
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DEMO_001.TIF
DEMO_001.X1 POSTAL_AREA
//MAIN POSTAL AREA

DEMO_001.X21 REG_NUMBER
//POSTAL REGISTRATION NUMBER
DEMO_001:X22 ADDRESSES
//ADDRESS AREAS

DEMO_001.X31 TEXTLINES_HW
//HANDWRITTEN TEXTLINES

DEMO_001.X41 WORDS_HW
//HANDWRITTEN WORDS

DEMO_001.X51 CHARACTER_HW
//HANDWRITTEN CHARACTERS

DEMO_001.X32 TEXTLINES_MP
//MACHINE PRINTED TEXTLINES

DEMO_001.X23 BARCODE
//BARCODES

Fig. 7. Example of a document hierarchy file

BHE: /* Begin of Header */
FTY: REC /* file type */
PIC: DEMO_001.TIF /* name of image file */
WUE: 3 /* number of region */
DES: MAIN POSTAL AREAS /* region type */
PFN: DEMO_001.X1 /* Name of Parent File */
EHE: /* End of Header */
BDA: /* Begin of Data */
.
BDR: /* Begin of Data Record */
OID: 3 /* unique ID of region */
POI: 0 /* ID of parent region */
OBB: REC 0 0 163 168 /* geom. zone-description */
OBE: /* End of Description */
LBL: RECIPIENT_ADDRESS /* Label of region */
. /* additional information */
EDR: /* End of Data Record */
.
EDA: /* End of Data */
EOF: /* End of File */

Fig. 8. Example of a region description file

be defined. It should be flexible and easy to use. A hierarchical token-based
structure, as used in the IFN/ENIT-database, seems to be a good choice, as it
is extendable and easy to use [24].
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Fig. 9. Example of a gray scale image of a letter

Fig. 10. Another example of a gray scale image of a letter

Fig. 7 shows an example of the hierarchical structure of a document where
the names of the files are given, which describe the data of the associated image
regions. In the IFN/ENIT-database, the hierarchy consists of only one level.

The format of the region files is line-oriented, with a token of three capital
letters at the beginning of each line defining its contents. This format is a byte-
stream, easy to read, and OS-independent. Due to the format of the region files,
any additional information can be inserted just by adding an appropriate token
to the list of possible tokens, without altering the format, as unknown tokens
are simply ignored by the corresponding reader. Fig. 8 shows an example of such
a file.

Examples of typical real world data, such as addresses written on letters, are
shown in Figures 9 and 10. It can be seen that the words in these examples are
written more differently than in the form, which was designed for easy labeling,
as in the collection of artificial data for the IFN/ENIT-database. The vertical
dimensions of the words vary significantly, and the writing lines overlap partially.
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Fig. 11. Example with a section of a filled form with a mixture of handwritten Latin
and Arabic characters

These features make segmentation into words and estimation of the baseline of
a word difficult tasks.

Therefore, a huge amount of real world data is needed to develop appropriate
methods for preprocessing and segmentation. The advantage of a hierarchical
database description lies in allowing the usage of parts of the data to test modules
of the whole system only.

The address reading application shows that, for the correct interpretation of
an address, additional knowledge about the different ways of writing addresses
in Arabic is needed. The Arabic writing style, as well as special features, have
to be considered, too.

Fig. 11 shows another example of real world data. The form is printed mainly
with Latin characters and is filled with words written with Latin and Arabic
characters. Here, knowledge about the structure of the form must be available
for a successful recognition process.

These few examples of real world data show that using different application
aspects are necessary when collecting data for a database.

5.2 Arabic Language Modules

The features of Arabic handwriting must be considered in an Arabic handwriting
recognition system along with syntax and semantics to conduct the recognition
process. This information can be used implicitly or explicitly during the recog-
nition process to reduce, the lexicon size, and to verify the recognition result on
the word or sentence level. Besides using dictionary lookup, letter n-grams (or
even word morphology rules) can improve recognition results as well. The use
of language modules in recognition systems requires databases that allow the
training and testing of such methods.
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5.3 Competitions

Competitions organized on the basis of images of real world data are recom-
mended. With the aforementioned hierarchical region description and flexible
token-based labeling of the data, a comparison of modules and systems on dif-
ferent levels of complexity becomes possible. Address reading systems, for ex-
ample, use the image of an envelope as input and deliver name and address of
the recipient as output. The test of a single module, e.g., text block location,
word segmentation, baseline estimation, and word recognition, is possible if the
associated ground truth information is available in the region description.

A crucial aspect of competitions involves the detailed presentation and dis-
cussion of different methods to understand which method works better and why.
The organization of a workshop to present the results and discuss the different
approaches is recommended.

6 Future Work

Considering all the aspects discussed in the previous sections, the next steps
to provide better Arabic handwriting recognition systems are obvious. In the
following, the necessary steps are listed:

– Selection of interesting fields of application for Arabic handwriting recogni-
tion.

– Collection of real world data, perform scanning and labeling of the data to
construct a database.

– If real world data are not available: development of a concept to generate
an artificial database by selecting people to fill forms. Scanning and labeling
may be easier, as the form can be specially designed.

– Organization of a workshop to discuss newest research results and to present
a performance evaluation of different systems or modules based on a common
dataset, performed by an independent group.

– Formation of new datasets available to research teams immediately. The
labels should have the same format for different datasets.

– Development of performance measurements of processing and recognition
modules should be considered in the workshops.

– Workshops should be conducted annually, and interdisciplinary contributions
encouraged.

– Exchange of methods between handwriting recognition of different languages.

From experience gathered on other languages, these steps should help us reach
the goal of developing better Arabic handwriting reading machines. In addition
to this short-term objective, we hope to approach a better understanding of the
nature of the reading process of humans in general, to reduce the work needed
to adapt a system to a new application.
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7 Conclusion

In this chapter we have discussed different databases and methods for evaluat-
ing recognition modules or systems. Much of the work done on text recognition
systems for Latin character based text can adapt to Arabic text recognition.
For the time being, the methods used for comparing different systems can be
identical to the ones developed for Latin character based OCR systems. Later,
special aspects of Arabic writing should be considered. The organization of com-
petitions with the presentation of recognition results and discussions of different
approaches form the basis of a successful work on offline Arabic handwriting
recognition systems.
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Abstract. The technology of handwritten Chinese character recogni-
tion (HCCR) has seen significant advances in the last two decades owing
to the effectiveness of many techniques, especially those for character
shape normalization and feature extraction. This chapter reviews the
major methods of normalization and feature extraction and evaluates
their performance experimentally. The normalization methods include
linear normalization, nonlinear normalization (NLN) based on line den-
sity equalization, moment normalization (MN), bi-moment normaliza-
tion (BMN), modified centroid-boundary alignment (MCBA), and their
pseudo-two-dimensional (pseudo 2D) extensions. As to feature extrac-
tion, I focus on some effective variations of direction features: chaincode
feature, normalization-cooperated chaincode feature (NCCF), and gradi-
ent feature. The features are compared with various resolutions of direc-
tion and zoning, and are combined with various normalization methods.
In experiments, the current methods have shown superior performance
on handprinted characters, but are insufficient applied to unconstrained
handwriting.

1 Introduction

Since the first work of printed Chinese character recognition (PCCR) was pub-
lished in 1966 [1], many research efforts have been contributed to both printed
and handwritten Chinese character recognition (HCCR). Research on online
HCCR began as early as PCCR [2], whereas offline HCCR was started in the
late 1970s and has attracted high attention from the 1980s [3]. Many effective
methods have been proposed to solve this problem, and the recognition perfor-
mance has advanced significantly [4,5]. This chapter is mainly concerned with
offline HCCR, but most methods of offline recognition apply to online recognition
as well [6].

The approaches of HCCR can be grouped roughly into two categories: fea-
ture matching (statistical classification) and structure analysis. Based on fea-
ture vector representation of character patterns, feature matching approaches

D.S. Doermann and S. Jaeger (Eds.): SACH 2006, LNCS 4768, pp. 104–128, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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used to compute a simple distance measure (correlation matching), such as Eu-
clidean or city block distance, between the test pattern and class prototypes.
Currently, sophisticated classification techniques [7,8,9], including parametric
and non-parametric statistical classifiers, neural networks, support vector ma-
chines (SVMs), etc., can yield higher recognition accuracies. Nevertheless, the
selection and extraction of features remains an important issue. Structure analy-
sis is an inverse process of character generation: to extract the constituent strokes
and compute a structural distance measure between the test pattern and class
models. Due to its resembling human cognition and the potential of absorbing
large deformation, this approach was pursued intensively in the 1980s and is still
advancing [10]. However, due to the difficulty of stroke extraction and structural
model building, it is not widely followed.

Statistical approaches have achieved great success in handprinted character
recognition and are well commercialized. This is firstly due to the simple imple-
mentation of feature extraction based on template matching and classification
based on vector computation. Also, effective shape normalization and feature
extraction techniques, which improve the separability of patterns of different
classes in feature space, have been proposed. Third, current machine learning
methods enable classifier training with large set of samples for better discrimi-
nation of shapes in different classes.

The methodology of Chinese character recognition has been largely affected by
some important techniques: blurring [11], directional pattern matching [12,13,14],
nonlinear normalization [15,16], and modified quadratic discriminant function
(MQDF) [17]. These techniques, and their variations or improved versions, are
still widely followed and adopted in most recognition systems. Blurring is actu-
ally a low-pass spatial filtering operation. It was proposed in the 1960s from the
viewpoint of human vision and is effective to blur the stroke displacement of char-
acters of the same class. Directional pattern matching, motivated from local recep-
tive fields in vision, predates the current direction histogram features. Nonlinear
normalization, which regulates stroke positions as well as image size, significantly
outperforms the conventional linear normalization (resizing only). The MQDF is
a nonlinear classifier, suitable for high-dimensional features and large numbers
of classes. Its variations include the pseudo Bayes classifier [18] and the modified
Mahalanobis distance [19].

This chapter reviews the major normalization and feature extraction meth-
ods and evaluates their performances in offline HCCR on large databases. The
normalization methods include linear normalization (LN), nonlinear normaliza-
tion (NLN) based on line density equalization [15,16], moment normalization
(MN) [20], bi-moment normalization (BMN) [21], modified centroid-boundary
alignment (MCBA) [22], as well as the pseudo-two-dimensional (pseudo 2D)
extensions of them [23,24]. These methods have been evaluated previously [24],
but, in this study, they will be evaluated with better implementation of features.

Though many features have been proposed for character recognition, I fo-
cus on the class of direction histogram features, including chaincode direction
feature, normalization-cooperated chaincode feature (NCCF) [25], and gradient
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direction feature. These features have yielded superior performance due to their
sensitivity to stroke-direction variance and the insensitivity to stroke-width vari-
ance. The gradient direction feature was not examined closely until the success
of gradient vector decomposition [26], following a decomposition scheme previ-
ously proposed in online character recognition [27]. Alternatively, the direction
of gradient was quantized into a number of angular regions [28]. By NCCF, the
chaincode direction comes from the original image, instead of the normalized
image, but the directional elements are displaced in normalized planes accord-
ing to normalized coordinates. An improved version of NCCF maps chaincodes
into continuous line segments in normalized planes [29].

In the history, some extensions of direction features, such as the peripheral
direction contributivity (PDC) [30] and the reciprocal feature field [31], have
reported higher accuracy in HCCR when a simple distance metric was used.
These features, with very high dimensionality (over 1,000), actually have high
redundancy. As background features, they are sensitive to noise and connecting
strokes. Extending the line element of direction feature to higher-order feature
detectors (e.g., [32,33]) helps discriminate similar characters, but the dimension-
ality also increases rapidly. The Gabor filter, also motivated from vision research,
promises feature extraction in character recognition [34], but is computationally
expensive compared to chaincode and gradient features, and, at best, performs
comparably with the gradient feature [35].

I evaluate the character shape normalization and direction feature extraction
methods on two databases of handwritten characters, ETL9B (Electrotechnical
Laboratory, Japan) and CASIA (Institute of Automation, Chinese Academy of
Sciences), with 3,036 classes and 3,755 classes, respectively. Recognition accura-
cies are evaluated using two common classifiers, the minimum distance classifier
and modified quadratic discriminant function (MQDF).

This study has a twofold purpose. First, the comparison of major normaliza-
tion and feature extraction methods can provide guidelines for selecting methods
in system development. Second, the results show the degree of performance that
the state-of-the-art methods can achieve. I will show in experiments that the
current methods can recognize handprinted characters accurately but perform
inferiorly on unconstrained handwriting.

In the rest of this chapter, I review major normalization methods in Section
2 and direction feature extraction methods in Section 3. I present experimental
results in Section 4, and finally, offer concluding remarks in Section 5.

2 Shape Normalization

Normalization regulates the size, position, and shape of character images, to
reduce the shape variation between images of the same class. Denote the input
image and the normalized image by f(x, y) and g(x′, y′), respectively, normal-
ization is implemented by coordinate mapping

{
x′ = x′(x, y),
y′ = y′(x, y). (1)
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Most normalization methods use 1D coordinate mapping:

{
x′ = x′(x),
y′ = y′(x). (2)

Under 1D normalization, the pixels in the same row/column in the input im-
age map to the same row/column in the normalized image, hence, the shape
restoration capability is limited.

Given coordinate mapping functions (1) or (2), the normalized image g(x′, y′)
is generated by pixel value and coordinate interpolation. In my implementation
of 1D normalization, I map the coordinates forward from (binary) input image to
normalized image and generate the binary normalized image via coordinate in-
terpolation. For generating the gray-scale normalized image, each pixel is viewed
as a square of unit area. By coordinate mapping, the unit square in the input
image maps to a rectangle in the normalized plane, and each pixel (unit square)
overlapping with the mapped rectangle is assigned a gray level proportional to
the overlapping area [29].

In the case of 2D normalization, the mapped shape of a unit square onto the
normalized plane is quadrilateral [24]. To compute the overlapping areas of this
quadrilateral with the pixels (unit squares) in the normalized plane, I decompose
the quadrilateral into trapezoids each exists within a row of unit squares. Each
within-row trapezoid is further decomposed into trapezoids within a unit square.
After generating the normalized gray-scale image, the binary normalized image
is obtained by thresholding the gray-scale image (fixed threshold 0.5).

In my experiments, the normalized image plane is set to a square of edge
length L, which is not necessarily fully occupied. To alleviate the distortion of
elongated characters, I partially preserve the aspect ratio of the input image.
By aspect ratio adaptive normalization (ARAN) [29,36], the aspect ratio R2 of
normalized image is a continuous function of the aspect ratio R1 of input image:

R2 =
√

sin(
π

2
R1). (3)

R1 is calculated by

R1 =
{

W1/H1, if W1 < H1
H1/W1, otherwise (4)

where W1 and H1 define the width and height of the input image. The width
W2 and height H2 of the normalized image similarly relate by the aspect ratio
R2. If the input image vertically elongates, then, in the normalized plane, the
vertical dimension is filled (height L) and the horizontal dimension is centered
and scaled according to the aspect ratio. Otherwise, the horizontal dimension
is filled (width L), and the vertical dimension is centered and scaled. ARAN is
depicted in Fig. 1.

The normalization methods depend on the coordinate mapping functions,
defined by the 1D and pseudo 2D normalization methods as follows.
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Fig. 1. Aspect ratio adaptive normalization (ARAN). Rectangle with thick line: occu-
pied area of normalized image.

2.1 1D Normalization Methods

Given the sizes of input and normalized images, the coordinate mapping func-
tions of linear normalization (LN) are simply

{
x′ = W2

W1
x,

y′ = H2
H1

y.
(5)

Both the linear normalization and line-density-based nonlinear normalization
(NLN) methods align the physical boundaries (ends of stroke projections) of the
input image to the boundaries of the normalized image. The coordinate mapping
of NLN is obtained by accumulating the normalized line density projections (line
density equalization): {

x′ = W2
∑x

u=0 hx(u),
y′ = H2

∑y
v=0 hy(v), (6)

where hx(x) and hy(y) are the normalized line density histograms of x axis and
y axis, respectively. They are obtained by normalizing the projections of local
line densities into unity sum:

⎧
⎨

⎩

hx(x) = px(x)�
x px(x) =

�
y dx(x,y)

�
x

�
y dx(x,y) ,

hy(y) = py(y)�
y py(y) =

�
x dy(x,y)�

x

�
y dy(x,y) ,

(7)

where px(x) and py(y) are the line density projections onto x axis and y axis,
respectively, and dx(x, y) and dy(x, y) are local line density functions.

According to Tsukumo and Tanaka [15], the local line densities dx and dy

are taken as the reciprocal of horizontal/vertical run-length in the background
area or a small constant in the stroke area. While in Yamada, et al. [16], dx and
dy are calculated considering both background run-length and stroke run-length
and are unified to render dx(x, y) = dy(x, y). The two methods perform compa-
rably, but Tsukumo and Tanaka’s is computationally simpler [5]. By adjusting
the density functions of marginal and stroke areas empirically in Tsukumo and
Tanaka’s method, better performance than Yamada, et al’s has been achieved.
My experiments employ this improved version of NLN.
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The 1D moment normalization (MN) method (a simplified version of Casey’s
method [20]) aligns the centroid of the input image (xc, yc) to the geometric
center of the normalized image (x′

c, y
′
c) = (W2/2, H2/2) and re-bounds the input

image according to second-order 1D moments. Let the second-order moments be
μ20 and μ02, the width and height of the input image are re-set to δx = 4

√
μ20

and δy = 4
√

μ02, respectively. The coordinate mapping functions are then given
by {

x′ = W2
δx

(x − xc) + x′
c,

y′ = H2
δy

(y − yc) + y′
c.

(8)

The bi-moment normalization (BMN) method [21] aligns the centroid of in-
put image as the moment normalization does, but the width and height are
treated asymmetrically with respect to the centroid. To do this, the second-
order moments are split into two parts at the centroid: μ−

x , μ+
x , μ−

y , and μ+
y .

The boundaries of the input image are re-set to [xc − 2
√

μ−
x , xc + 2

√
μ+

x ] and

[yc − 2
√

μ−
y , yc + 2

√
μ+

y ]. For the x axis, a quadratic function u(x) = ax2 +

bx+c aligns three points (xc −2
√

μ−
x , xc, xc +2

√
μ+

x ) to normalized coordinates
(0, 0.5, 1), and similarly, a quadratic function v(y) works for the y axis. Finally,
the coordinate functions are

{
x′ = W2u(x),
y′ = H2v(y). (9)

The quadratic functions can also align the physical boundaries and centroid,
i.e., map (0, xc, W1) and (0, yc, H1) to (0, 0.5, 1). This method is called centroid-
boundary alignment (CBA). A modified CBA (MCBA) method [22] also adjusts
the stroke density in the central area by combining a sine function with the
quadratic functions:

{
x′ = W2[u(x) + ηx sin(2πu(x))],
y′ = H2[v(y) + ηy sin(2πv(y))]. (10)

The amplitudes of sine waves, ηx and ηy, are estimated from the extent of the
central area, defined by the centroids of the partial images divided by the global
centroid.

2.2 Pseudo 2D Normalization Methods

Horiuchi, et al. proposed a pseudo 2D nonlinear normalization (P2DNLN)
method by equalizing the line density functions of each row/column instead of
the line density projections [23]. To control the degree of shape deformation, they
blurred the line density functions such that the equalization of each row/column
depends on its neighboring rows/columns. Though this method promises recog-
nition, it is computationally expensive because of row/column-wise line density
blurring.
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An efficient pseudo 2D normalization approach, called line density projection
interpolation (LDPI), was proposed recently [24]. Instead of line density blurring
and row/column-wise equalization, LDPI partitions the 2D line density map into
soft strips. 1D coordinate functions are computed from the density projection
of each strip and combined into a 2D function. Specifically, let the width and
height of the input image be W1 and H1, the centroid be (xc, yc), the horizontal
line density map dx(x, y) is partitioned into three horizontal strips:

di
x(x, y) = wi(y)dx(x, y), i = 1, 2, 3. (11)

wi(y) (i = 1, 2, 3) are piecewise linear functions:
⎧
⎪⎪⎨

⎪⎪⎩

w1(y) = w0
yc−y

yc
, y < yc,

w2(y) = 1 − w1(y), y < yc,
w2(y) = 1 − w3(y), y ≥ yc,
w3(y) = w0

y−yc

H1−yc
, y ≥ yc,

(12)

where w0 controls the weight of the upper/lower part of line density map. A
small value of w0 renders the interpolated 2D coordinate function similar to
that of 1D normalization, while a large one may yield excessive deformation.
The weight functions with w0 = 1 are depicted in Fig. 2.

Fig. 2. Weight functions for partitioning line density map into soft strips

The horizontal density functions of three strips project onto the x axis:

pi
x(x) =

∑

y

di
x(x, y), i = 1, 2, 3. (13)

The projections are then normalized to a unity sum and accumulated to give 1D
coordinate functions x′i(x), i = 1, 2, 3, which combine to 2D coordinate functions
by interpolation:

x′(x, y) =
{

w1(y)x′1(x) + w2(y)x′2(x), y < yc,
w3(y)x′3(x) + w2(y)x′2(x), y ≥ yc.

(14)

Similar to the partitioning of horizontal density, the vertical density map
dy(x, y) is partitioned into three vertical strips using weight functions in the x
axis. The partitioned density functions di

y(x, y), i = 1, 2, 3 are similarly equalized
and interpolated to generate the 2D coordinate function y′(x, y).
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The strategy of LDPI extends to other 1D normalization methods: MN, BMN,
and MCBA. The extended versions are called pseudo 2D MN (P2DMN), pseudo
2D BMN (P2DBMN), and pseudo 2D CBA (P2DCBA), respectively. These
methods do not rely on the computation of local line density map. Instead, they
are directly based on the pixel intensity of a character image. As the soft parti-
tioning of line density map in LDPI, the input character image f(x, y) is softly
partitioned into three horizontal strips f i

x(x, y), i = 1, 2, 3, and three vertical
strips f i

y(x, y), i = 1, 2, 3. The horizontal strips project onto the x axis:

pi
x(x) =

∑

y

f i
x(x, y), i = 1, 2, 3. (15)

For P2DMN, the second order moment is computed from the projection of a
strip:

μi
20 =

∑
x(x − xi

c)
2pi

x(x)
∑

x pi
x(x)

. (16)

The width of this strip is re-set to δi
x = 4

√
μi

20, which determines the scaling
factor of 1D coordinate mapping:

x′i(x) =
W2

δi
x

(x − xi
c) +

W2

2
. (17)

The 1D coordinate functions of vertical strips are similarly computed from strip
projections.

For P2DBMN, the second order moment of a horizontal strip is split into two
parts at the centroid of this strip: μi−

20 and μi+
20 . The bounds of this strip is re-set

to [xi
c − 2

√
μi−

20 , xi
c + 2

√
μi+

20 ], which, together with the centroid xi
c, estimates

the quadratic 1D coordinate mapping function x′i(x). The three 1D coordinate
functions of vertical strips are computed similarly.

By P2DCBA, from the vertical projection of each horizontal strip f i
x(x, y)

(i = 1, 2, 3), the centroid coordinate xi
c and two partial centroids xi

c1 and xi
c2

are computed to estimate the parameters of 1D coordinate mapping function
x′i(x). Similarly, 1D coordinate functions y′i(y) (i = 1, 2, 3) are estimated from
the horizontal projections of vertical strips.

More details of pseudo 2D normalization can be found in [24]. Fig. 3 shows
some examples of normalization using nine methods (LN, NLN, MN, BMN,
MCBA, LDPI, P2DMN, P2DBMN, and P2DCBA). We can see that linear
normalization (LN) keeps the original shape (only aspect ratio changed), but
NLN can effectively equalize the line intervals. The centroid-based normalization
methods (MN, BMN, and MCBA) effectively regulate the overall shape (skew-
ness of gravity, balance of inner/outer stroke density). The pseudo 2D methods
make the stroke positions more uniform, and especially, alleviate the imbalance
of width/height and position of character parts.



112 C.-L. Liu

Fig. 3. Character image normalization by nine methods. The leftmost image is original
and the other eight are normalized ones.

3 Direction Feature Extraction

The implementation of direction feature is various depending on the directional
element decomposition, the sampling of feature values, the resolution of direction
and feature plane, etc. Considering that the stroke segments of Chinese charac-
ters can be approximated into four orientations: horizontal, vertical, left-diagonal
and right-diagonal, early works used to decompose the stroke (or contour) seg-
ments into these four orientations.

Feature extraction from stroke contour has been widely adopted because the
contour length is nearly independent of stroke-width variation. The local direc-
tion of contour, encoded as a chaincode, actually has eight directions (Fig. 4).
Decomposing the contour pixels into eight directions instead of four orienta-
tions (a pair of opposite directions merged into one orientation) significantly
improved the recognition accuracy [26]. This is because separating the two sides
of a stroke edge can better discriminate the parallel strokes. The direction of
a stroke edge can also be measured by the gradient of image intensity, which
applies to gray-scale images as well as binary images. The gradient feature has
applied to Chinese character recognition in 8-direction [37] and 12-direction [38].

Direction feature extraction is accomplished in three steps: image normal-
ization, directional decomposition, and feature sampling. Conventionally, the

Fig. 4. Eight directions of chaincodes
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contour/edge pixels of the normalized image are assigned to a number of direc-
tion planes. The normalization-cooperated feature extraction (NCFE) strategy
[25], instead, assigns the chaincodes of the original image into direction planes.
Though NCFE does not generate the normalized image, the coordinates of pixels
in the original image map to a standard plane, and the extracted feature thus
depends on the normalization method.

The direction feature is also called direction histogram feature because, at
a pixel or a local region in the normalized image, the strength values of Nd

directions form a local histogram. Alternatively, I view the strength values of
one direction as a directional image (direction plane).

In the following, I first describe the directional decomposition procedures
for three types of direction features: chaincode direction feature, normalization-
cooperated chaincode feature (NCCF), and gradient direction feature, then ad-
dress the sampling of direction planes.

3.1 Directional Decomposition

Directional decomposition results in a number of direction planes (the same size
as the normalized image), fi(x, y), i = 1, . . . , Nd. I first describe the procedures
for decomposing contour/gradient into eight directions, then extend to 12 and
16 directions.

In binary images, a contour pixel is a black point that has at least one white 4-
connected neighbor. The 8-direction chaincodes of contour pixels can be decided
by contour tracing, or more simply, by a raster scan [39]. At a black pixel (x, y),
denoting the values of 8-connected neighbors counterclockwise as pk, 0, 1, . . . , 7,
with the east neighbor being p0. For k = 0, 2, 4, 6, if pk = 0, check pk+1: if
pk+1 = 1 (chaincode k + 1), fk+1(x, y) increases by 1; otherwise, if p(k+2)%8 = 1
(chaincode (k + 2)%8), f(k+2)%8(x, y) increases by 1.

For NCCF, I view each chaincode in the original image as a line segment
connecting two neighboring pixels, which maps to another line segment in a
standard direction plane by coordinate mapping. In the direction plane, each
pixel (unit square) crossed by the line segment in the main (x or y) direc-
tion is given a unit of direction contribution. To exploit the continuous nature
of line segment, the strength of the line direction falling in a pixel is propor-
tional to the length of the line segment falling in the unit square (continuous
NCCF [29]). As in Fig. 5, where a line segment mapped from a chaincode cov-
ers four unit squares A, B, C, and D. By discrete NCCF, the pixels A and C
are assigned a direction unit, whereas by continuous NCCF, all the four pix-
els are assigned direction strengths proportional to the in-square line segment
length.

In gradient direction feature extraction, the gradient vector, computed on
the normalized image using the Sobel operator, is decomposed into components
in eight chaincode directions. The Sobel operator uses two masks to compute
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Fig. 5. NCCF on continuous direction plane

Fig. 6. Templates of Sobel gradient operator

the gradient components on two axes. The masks are shown in Fig. 6, and the
gradient g(x, y) = [gx, gy]T at location (x, y) is computed by

gx(x, y) = f(x + 1, y − 1) + 2f(x + 1, y) + f(x + 1, y + 1)
−f(x − 1, y − 1) − 2f(x − 1, y) − f(x − 1, y + 1),

gy(x, y) = f(x − 1, y + 1) + 2f(x, y + 1) + f(x + 1, y + 1)
−f(x − 1, y − 1) − 2f(x, y − 1) − f(x + 1, y − 1).

(18)

The gradient strength and direction can be computed from the vector [gx, gy]T .
The range of gradient direction can be partitioned into a number (say, 8 or 16)
of regions, and each region corresponds to a direction plane. More effectively, the
gradient vector is decomposed into components in standard directions, follow-
ing a strategy previously proposed in online character recognition [27]. In this
scheme, if a gradient direction lies between two standard directions, the vector
is decomposed into two components, as shown in Fig. 7. The length of each
component is assigned to the corresponding direction plane at the pixel (x, y).

Fig. 8 shows the direction planes of three decomposition schemes: NCCF,
chaincodes of normalized image, and gradient of normalized image. The direction
planes are arranged in order of stroke orientation. We can see that the planes
of chaincode directions (third row) are similar to those of gradient directions.
The planes of NCCF, describing the local directions of the original image, show
some difference. Comparing the original image and the normalized image, the
orientation of the right-hand stroke, near left-diagonal orientation, deforms to
near vertical. Consequently, the direction planes of the left-diagonal orientation
of NCCF are stronger than those of chaincodes and gradients, while the planes
of the vertical orientation of NCCF are weaker than those of chaincodes and
gradients.
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Fig. 7. Decomposition of gradient vector

Fig. 8. Original image and normalized image (top row), 8-direction planes of NCCF
(second row), chaincode planes of normalized image (third row), and gradient direction
planes (bottom row)

3.2 Extension to More Directions

The extension of gradient decomposition into more than eight directions is
straightforward: simply setting Nd standard directions with angle interval
360/Nd and, typically, with one direction pointing to east, then decompose each
gradient vector into two components in standard directions and assign the com-
ponent lengths to corresponding direction planes. I set Nd to 12 and 16.

To decompose contour pixels into 16 directions, I follow the 16-direction ex-
tended chaincodes, which are defined by two consecutive chaincodes. In the
weighted direction histogram feature of Kimura et al. [18], 16-direction chain-
codes are down-sampled by weighted average to form 8-direction planes.

Again, the 16-direction chaincode of contour pixels can be determined by a
raster scan. At a contour pixel (x, y), when its 4-connected neighbor pk = 0 and
the counterclockwise successor pk+1 = 1 or p(k+2)%2 = 1, search the neighbors
clockwise from pk until a pj = 1 is found. The two contour pixels, pk+1 or
p(k+2)%2 and pj, form a 16-direction chaincode. In Fig. 9, the center pixel has the
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Fig. 9. 16-direction chaincode formed from two 8-direction chaincodes

east neighbor being 0, the north neighbor alone defining the 8-direction chaincode
and defining a 16-direction chaincode together with the southeast neighbor. The
16-direction chaincode can be indexed from a table of correspondence between
the code and the difference of coordinates of two pixels forming the code, as
shown in Fig. 10. Each contour pixel has a unique 16-direction code.

Fig. 10. Difference of coordinates and the corresponding 16-direction chaincodes

For decomposing contour pixels into 12 directions, the difference of coordi-
nates corresponding to a 16-direction chaincode appears as a vector (the dashed
line in Fig. 9), which is decomposed into components in 12 standard directions as
a gradient vector is done. In this sense, the 12-direction code of a contour pixel
is not unique. For 12-direction chaincode feature extraction, a contour pixel is
assigned to two direction planes, with strength proportional to the component
length. For NCCF, the two corresponding direction planes are assigned strengths
proportional to the overlapping length of the line segment mapped by coordinate
functions, as in Fig. 5.

3.3 Blurring and Sampling

Each direction plane, with the same size as the normalized image, need to be
reduced to extract feature values of moderate dimensionality. A simple way is
to partition the direction plane into a number of block zones and take the total
or average value of each zone as a feature value. Partition of variable-size zones
was proposed to overcome the non-uniform distribution of stroke density [13],
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but is unnecessary for nonlinear or pseudo 2D normalization. Overlapping blocks
alleviate the effect of stroke-position variation on the boundary of blocks [40],
yet a more effective way involves partitioning the plane into soft zones, which
follows the principle of low-pass spatial filtering and sampling [39]. The blurring
operation of Iijima [11] implies spatial filtering without down-sampling.

In implementation of blurring, the impulse response function (IRF) of spatial
filter is approximated into a weighted window, also called a blurring mask. The
IRF is often a Gaussian function:

h(x, y) =
1

2πσ2
x

exp
(

− x2 + y2

2σ2
x

)
. (19)

According to the Sampling Theorem, the variance parameter σx relates to the
sampling frequency (the reciprocal of sampling interval). On truncating the
band-width of Gaussian filter, an empirical formula was given in [39]:

σx =
√

2tx
π

, (20)

where tx is the sampling interval. At a location (x0, y0) of image f(x, y), the
convolution gives a sampled feature value

F (x0, y0) =
∑

x

∑

y

f(x, y) · h(x − x0, y − y0). (21)

Fig. 11 shows the blurred images (without down-sampling) of the direction
planes in Fig. 8. By blurring, the sparse pixels in direction planes merge into
strokes or blobs.

Fig. 11. Blurred images (not down-sampled) of the direction planes in Fig. 8

For ease of implementation, I partition a direction plane into a mesh of equal-
size blocks and set the sampling points to the center of each block. Assume to
extract K × K values from a plane, the size of plane is set to Ktx × Ktx. From
Nd direction planes, the total number of extracted feature values is Nd × K2.
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The extracted feature values are causal variables. Power transformation can
make the density function of causal variables closer to Gaussian [7]. This helps
improve the classification performance of statistical classifiers. Power transfor-
mation is also called variable transformation [41] or Box-Cox transformation
[42]. I transform each feature value with power 0.5 without attempt to optimize
the transformation functions.

4 Performance Evaluation

I first compare the performance of the normalization and feature extraction
methods on two large databases of handprinted characters (constrained writ-
ing), then test the performance on a small set of unconstrained handwritten
characters.

I use two classifiers: the Euclidean distance to class mean (minimum dis-
tance classifier) and the MQDF [17]. For reducing the classifier complexity and
improving classification accuracy, the feature vector is transformed to a lower di-
mensionality by Fisher linear discriminant analysis (FLDA) [7]. I set the reduced
dimensionality to 160 for all feature types.

Denote the d-dimensional feature vector (after dimensionality reduction) by
x, the MQDF of class ωi is computed by

g2(x, ωi) =
∑k

j=1
1

λij
[(x − μi)T φij ]2

+ 1
δi

{
‖x − μi‖2 −

∑k
j=1[(x − μi)T φij ]2

}

+
∑k

j=1 log λij + (d − k) log δi,

(22)

where μi is the mean vector of class ωi, λij and φij , j = 1, . . . , d, are the eigen-
values and eigenvectors of the covariance matrix of class ωi. The eigenvalues
are sorted in non-ascending order and the eigenvectors are sorted accordingly.
k denotes the number of principal axes, and the minor eigenvalues are replaced
with a constant δi. I set a class-independent constant δi, which is proportional
to the average feature variance, with the multiplier selected by a 5-fold holdout
validation on the training data set (1/5 of training data is held out for evaluating
the candidate values of the multiplier while the remaining 4/5 of data are used
for estimating classifier parameters).

In my experiments, k was set to 40. The classification of MQDF is speeded
up by selecting 100 candidate classes using a Euclidean distance. The MQDF
is then computed on the candidate classes only. Candidate selection is further
accelerated by clustering the class means into groups. The input feature vector is
first compared to cluster centers, then to the class means contained in a number
of nearest clusters. I set the total number of clusters to 220 for the ETL9B
database and 250 for the CASIA database.

The MQDF shows promises in classification for HCCR. Even higher perfor-
mance can be achieved by, e.g., discriminative learning of feature transformation
and classifier parameters [37,38]. This chapter, however, does not concern the
optimization of classifiers.
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4.1 Performance on Handprinted Characters

The normalization and feature extraction methods are evaluated on two
databases of handprinted characters. The ETL9B database contains the charac-
ter images of 3,036 classes (71 hiragana, and 2,965 Kanji characters in the JIS
level-1 set), with 200 samples per class. Experiments have widely evaluated this
database [18,40,43]. The CASIA database, which was collected by the Institute
of Automation, Chinese Academy of Sciences, in the early 1990s, contains the
handwritten images of 3,755 Chinese characters (the level-1 set in GB2312-80
standard), with 300 samples per class. Some sample images of the two databases
are shown in Fig. 12.

Fig. 12. Some test samples of ETL9B database (left) and CASIA database (right)

In the ETL9B database, I use the first 20 and last 20 samples of each class
for testing and the remaining samples for training classifiers. In the CASIA
database, I use the first 250 samples of each class for training and the remaining
50 samples per class for testing.

I first compare the performance of three direction features with varying direc-
tion resolutions with a common normalization method (Tsukumo and Tanaka’s
nonlinear normalization (NLN) method with favorable modifications). The di-
rection resolution of features is set to 8, 12, and 16. For each direction resolution,
three schemes of sampling mesh are tested. For 8-direction features, the mesh of
sampling is set to 7× 7 (M1), 8× 8 (M2), and 9× 9 (M3); for 12-direction, 6× 6
(M1), 7 × 7 (M2), and 8 × 8 (M3); and for 16-direction, 5 × 5 (M1), 6 × 6 (M2),
and 7 × 7 (M3). I control the size of the normalized image (direction planes)
as around 64 × 64, and the dimensionality (before reduction) as less than 800.
Table 1 summarizes the settings of the sampling mesh.

On classifier training and testing using different direction resolutions and sam-
pling schemes, the error rates on the test set of ETL9B database are listed in
Table 2, and the error rates on the test set of CASIA database are listed in Ta-
ble 3. In the tables, the chaincode direction feature is denoted by chn, NCCF is
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Table 1. Settings of sampling mesh for 8-direction, 12-direction, and 16-direction
features

Mesh M1 M2 M3
zones dim zones dim zones dim

8-dir 7 × 7 392 8 × 8 512 9 × 9 648
12-dir 6 × 6 432 7 × 7 588 8 × 8 768
16-dir 5 × 5 400 6 × 6 576 7 × 7 784

Table 2. Error rates (%) of 8-direction, 12-direction, and 16-direction features on
ETL9B database

Euclidean MQDF

chn M1 M2 M3 M1 M2 M3

8-dir 2.91 2.94 3.02 1.08 1.05 1.09
12-dir 2.43 2.56 2.54 1.02 1.00 0.97
16-dir 2.52 2.40 2.52 1.20 1.00 1.00

nccf M1 M2 M3 M1 M2 M3

8-dir 2.61 2.61 2.71 0.93 0.87 0.89
12-dir 2.05 2.06 2.13 0.82 0.77 0.78
16-dir 2.05 2.04 2.11 0.98 0.85 0.79

grd-g M1 M2 M3 M1 M2 M3

8-dir 2.59 2.58 2.66 0.93 0.90 0.89
12-dir 2.27 2.30 2.31 0.94 0.86 0.86
16-dir 2.29 2.19 2.25 1.08 0.94 0.85

Table 3. Error rates (%) of 8-direction, 12-direction, and 16-direction features on
CASIA database

Euclidean MQDF

chn M1 M2 M3 M1 M2 M3

8-dir 5.95 6.07 6.22 2.45 2.37 2.37
12-dir 5.34 5.44 5.53 2.34 2.26 2.21
16-dir 5.44 5.28 5.37 2.72 2.35 2.29

nccf M1 M2 M3 M1 M2 M3

8-dir 5.31 5.35 5.49 1.94 1.92 2.00
12-dir 4.44 4.48 4.55 1.86 1.75 1.73
16-dir 4.53 4.42 4.52 2.17 1.92 1.82

grd-g M1 M2 M3 M1 M2 M3

8-dir 5.31 5.34 5.41 2.05 2.01 1.97
12-dir 4.94 4.90 4.98 2.09 2.00 1.95
16-dir 4.98 4.85 4.80 2.42 2.09 1.98
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denoted by nccf, and the gradient direction feature by grd-g. For chaincode fea-
ture extraction, the normalized binary image is smoothed using a connectivity-
preserving smoothing algorithm [39]. The gradient feature is extracted from a
gray-scale normalized image.

We can see that on either database, using either classifier (Euclidean or
MQDF), the error rates of 12-direction and 16-direction features are mostly
lower than 8-direction features. This indicates that increasing the resolution of
direction decomposition is beneficial. The 16-direction feature, however, does not
outperform the 12-direction feature. To select a sampling mesh, I focus on the
results of 12-direction features. It is noted that by Euclidean distance classifica-
tion, M1 (6×6) outperforms M2 (7×7) and M3 (8×8), whereas by MQDF, the
error rates of M2 and M3 are lower than M1. Considering M2 and M3 perform
comparably while M2 has a lower complexity, I take the sampling mesh M2 with
12-direction features for following experiments. The original dimensionality of
direction features is now 12 × 7 × 7 = 588.

Table 4. Error rates (%) of various normalization methods on ETL9B database

Euclidean MQDF
Norm. chn nccf grd-g chn nccf grd-g

LN 6.36 5.94 5.97 2.38 2.09 2.11
NLN 2.56 2.06 2.30 1.00 0.77 0.86
MN 2.35 2.07 2.12 0.95 0.83 0.82
BMN 2.33 2.04 2.09 0.92 0.81 0.80
MCBA 2.52 2.19 2.27 1.00 0.84 0.86

LDPI 2.08 1.65 1.90 0.82 0.64 0.73
P2DMN 2.05 1.65 1.84 0.86 0.69 0.74
P2DBMN 1.97 1.60 1.78 0.84 0.69 0.73
P2DCBA 2.13 1.81 1.93 0.86 0.72 0.77

By fixing the direction resolution (12-direction) and sampling mesh (7 × 7), I
combine the three types of direction features with nine normalization methods.
The weight parameter w0 of pseudo 2D normalization was set to 0.75 for good
recognition performance [24]. The error rates on the test sets of the two databases
are listed in Table 4 and Table 5, respectively. Comparing the normalization
methods, we can see that pseudo 2D methods are superior to 1D ones, and the
linear normalization (LN) is inferior to other 1D normalization methods. To
compare the three types of features, I view the error rates of 1D normalization
methods and those of pseudo 2D methods separately.

Table 4 and Table 5 demonstrate that with 1D normalization, the NCCF and
the gradient feature perform comparably, and both outperform the chaincode
feature. Four normalization methods, namely NLN, MN, BMN, and MCBA,
perform comparably. With pseudo 2D normalization, the NCCF performs best,
and the gradient feature outperforms the chaincode feature. Comparing the
pseudo 2D normalization methods, LDPI and P2DBMN outperform P2DMN
and P2DCBA (especially on the CASIA database). On both databases, the
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Table 5. Error rates (%) of various normalization methods on CASIA database

Euclidean MQDF
Norm. chn nccf grdg chn nccf grd-g

LN 11.38 10.46 10.31 4.11 3.49 3.54
NLN 5.44 4.48 4.90 2.26 1.75 2.00
MN 5.61 4.89 4.90 2.50 2.04 2.06
BMN 5.30 4.54 4.56 2.35 1.93 1.92
MCBA 5.48 4.73 4.83 2.31 1.87 1.96

LDPI 4.49 3.69 4.21 1.96 1.52 1.75
P2DMN 4.99 3.97 4.33 2.24 1.70 1.91
P2DBMN 4.63 3.71 4.07 2.15 1.62 1.76
P2DCBA 4.75 3.95 4.25 2.11 1.68 1.78

NCCF with LDPI normalization yields the best performance, and the NCCF
with P2DBMN is competitive.

The gradient feature performs comparably with NCCF with 1D normaliza-
tion, but is inferior when combined with pseudo 2D normalization. Pseudo 2D
normalization, though equalizes the stroke density better than 1D normaliza-
tion, also deforms the stroke directions remarkably. While the gradient feature
describes the deformed stroke directions, NCCF takes the stroke directions of
the original image.

4.2 Computation Times

To compare the computational complexity of normalization methods, I profile
the processing time in two sub-tasks: coordinate mapping and normalized image
generation. The latter is dichotomized into binary image and gray-scale image.
Smoothing happens for binary normalized images, but not for gray-scale images.

On the test samples of CASIA database, I measured the CPU times on a
Pentium-4-3GHz processor. The average times per sample are shown in Table 6.
The processing time of coordinate mapping varies with the normalization

Table 6. Average CPU times (ms) of normalization on CASIA database. Binary nor-
malized images involve smoothing.

coordinate binary grayscale

LN 0.002 0.318 0.133
NLN 0.115 0.331 0.143
MN 0.017 0.321 0.126
BMN 0.024 0.332 0.135
MCBA 0.032 0.336 0.137

LDPI 0.266 1.512 1.282
P2DMN 0.143 1.514 1.236
P2DBMN 0.147 1.536 1.274
P2DCBA 0.156 1.542 1.261
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Table 7. Average CPU times (ms) of feature extraction on CASIA database

direction blurring

chn 0.121 0.439
nccf 0.458 0.752
grd-g 0.329 1.276

method. The linear normalization (LN) is very fast. NLN is more expensive
than other 1D methods, and LDPI is more expensive than the other pseudo
2D methods, because NLN and LDPI involve line density computation. Nev-
ertheless, all these normalization methods are not computationally expensive.
Normalized image generation for pseudo 2D normalization methods is time con-
suming because it involves quadrilateral decomposition. The processing time of
a binary normalized image includes a smoothing time of about 0.3ms.

The CPU time of feature extraction is almost independent of the normalization
method. It contains two parts: directional decomposition and blurring. For aver-
age CPU times of three direction features, see Table 7. The processing time of blur-
ring depends on the sparsity of direction planes (zero pixels are not considered).
The direction planes of the chaincode feature are sparse, and those of the gradi-
ent feature are densest. The directional decomposition of NCCF takes the most
time because it involves line segment decomposition. Gradient direction decompo-
sition is more expensive than chaincode decomposition. Overall, NCCF remains
the most computationally efficient because it saves the time of generating the nor-
malized image. The average CPU time of NCCF ranges from 1.21ms to 1.47ms,
covering coordinate mapping and feature extraction. For reference, the average
classification time of MQDF (with cluster-based candidate selection) for 3,755
classes is 3.63ms, which can be largely reduced by fine implementation though.

4.3 Performance on Unconstrained Handwriting

The accuracies of the best methods on handprinted characters, 99.36% on ETL9B
database and 98.48% on CASIA database, are fairly high. To test the performance
on unconstrained handwritten characters, I use the classifiers trained from the
CASIA database to classify the samples in a small data set, which contains 20
samples for each of 3,755 classes, written by 20 writers without constraint. Some
samples of the unconstrained set are shown in Fig. 13.

On the unconstrained set, I evaluate various normalization methods with two
good features: NCCF and gradient direction feature. Table 8 lists the error rates.
We can see that, as for handprinted characters, the pseudo 2D normalization
methods yield lower error rates than their 1D counterparts on unconstrained
characters. However, line-density-based nonlinear normalization methods, NLN
and LDPI, are evidently inferior to the centroid-based methods. The P2DBMN
method performs best, and the P2DCBA method is competitive. Comparing the
two types of direction features, the gradient feature outperforms NCCF with 1D
normalization methods, but with pseudo 2D normalization, NCCF is superior.
Overall, the error rates on unconstrained characters remain high.
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Fig. 13. Samples of unconstrained handwritten characters

Table 8. Error rates (%) on unconstrained handwritten Chinese characters

Euclidean MQDF
Norm. nccf grdg nccf grd-g

LN 36.04 35.44 21.80 21.46
NLN 26.61 27.04 16.23 16.96
MN 25.63 25.18 16.40 16.09
BMN 25.15 24.53 15.91 15.64
MCBA 25.53 25.06 15.76 15.66

LDPI 24.93 25.60 15.12 15.73
P2DMN 23.48 24.38 14.84 15.37
P2DBMN 22.75 23.35 14.27 14.64
P2DCBA 23.80 23.78 14.73 14.79

Fig. 14. Misclassified samples (original image and normalized image) of unconstrained
handwritten characters
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Fig.14shows somemisclassifiedsamplesbyMQDF,withthebestnormalization-
feature combination (P2DBMN and NCCF). Most of the misclassified characters
have shapes similar to the assignedclass: someare inherently similar (top three rows
inFig. 14), andsomeothersare similardue to cursivewriting (fourthandfifthrows).
Yet the characters of the bottom row do not seem similar to their assigned classes.

5 Concluding Remarks

I compared various shape normalization and selected feature extraction meth-
ods in offline handwritten Chinese character recognition. For direction feature
extraction, my results show that 12-direction and 16-direction features outper-
form the 8-direction feature, and the 12-direction feature has a better tradeoff be-
tween accuracy and complexity. The comparison of normalization methods shows
that pseudo 2D normalization methods outperform their 1D counterparts. On
handprinted characters, a line-density-based method LDPI and a centroid-based
method P2DBMN perform best. Comparing three types of direction features,
the NCCF and the gradient feature outperform the chaincode feature and com-
pete when 1D normalization is used. With pseudo 2D normalization, the NCCF
outperforms the gradient feature. Overall, LDPI or P2DBMN with NCCF form
the best normalization-feature combination.

I also tested the performance on a small set of unconstrained handwritten
characters, with classifiers trained with handprinted samples. The error rates
on unconstrained characters are very high, but the comparison of normaliza-
tion and feature extraction methods reveals new insights. Though pseudo 2D
normalization methods again outperform their 1D counterparts, the line-density-
based LDPI method is inferior to the centroid-based methods, and the P2DBMN
method performs best. The best normalization-feature combination on uncon-
strained characters is P2DBMN with NCCF.

Training classifiers with unconstrained handwritten samples will improve the
accuracy of unconstrained character recognition. This requires large databases of
unconstrained characters. To reduce the error rate (say, to 2% on isolated char-
acters), however, using the current normalization and feature extraction meth-
ods and training current classifiers with a large sample set will not suffice. The
methods of shape normalization, feature extraction, and classifier design should
be re-considered for better recognition of cursively-written characters. Training
classifiers discriminatively can improve the accuracy of both handprinted and
unconstrained character recognition.
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Abstract. Uncertainty and variability are two of the most important concepts at the 
center of pattern recognition. It is especially true when patterns to be recognized are 
complex in nature and not controlled by any artificial constraints. Handwritten 
postal address recognition is one such case. This paper presents five principles of 
dealing with uncertainty and variability, and discusses how to decompose the com-
plex recognition task into manageable sub-tasks. When applicable, block diagrams 
will clarify the structure of various recognition components. This paper also presents 
implementation of those principles into real recognition engines. It will demonstrate 
that high accuracy and robustness of a recognition system, which relates to uncer-
tainty and variability, respectively, can occur only with comprehensive approaches.  

1   Introduction 

Historically, character recognition was the first concrete subfield of pattern recogni-
tion, which was actually studied before the concept of ‘pattern recognition’ came into 
existence. Historically, OCRs (Optical Character Readers) read machine-printed 
characters and handwritten characters in fixed, separate positions on specially designed 
forms. Today, OCRs have advanced greatly, and can read many types of documents, 
including business forms, bank checks, mail letter surfaces, book pages, etc.  

The capabilities of OCRs have expanded in multiple dimensions. The first dimen-
sion is script. Having begun with Arabic numeral characters, recognizable scripts now 
include Roman alphabets, Japanese syllabic letters, Kanji (Japanese Chinese charac-
ters), Chinese characters, Hangul characters, Indian scripts, and Arabic scripts. The 
second dimension concerns the style of printing and writing. In the case of ma-
chine-printed characters, many font faces exist in different sizes. As for handwritten 
characters, writers were required to ‘hand-print’ the numerals and upper-case alphabets 
in a restricted way. Today, advanced OCRs can recognize freely handwritten characters 
in a limited context such as bank checks and mail pieces. These specialized applications 
allow OCR algorithms to utilize contextual information to heighten the recognition 
accuracy to the industry strength.  

During these historical technology developments, uncertainty and variability have 
been key issues in technical challenges. Uncertainty refers to the state of something of 
which we are not sure. In the context of this paper, it is the state of a recognition engine, 
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or a recognition component, being uncertain about the input or the output. Therefore, 
the issue consists of two parts. One concerns how to deal with uncertainty in the input, 
and the other looks at how to reduce uncertainty in the output. These issues concerning 
uncertainty are outstanding as recognition tasks become more complex.  

Variability presents another key issue. It deals with variations in inputs. If no vari-
ations existed, no problems would occur in pattern recognition. Usually, given more 
variations, recognition performance degrades more, so we try to minimize degradation. 
Therefore, the issue is robustness, and how to make the system more robust.  

As a result, modern complex applications require researchers and engineers to think 
more about uncertainty and variability. This paper presents five design principles and 
implementation methodologies that lead to higher accuracy and higher robustness. The 
presentation includes examples from our experience in developing a Japanese postal 
address recognition system. The technical challenges come mostly from handwritten 
address recognition.  

The following sections are organized as follows. In Section 2, uncertainty and va-
riability in pattern recognition are discussed in some depth and, including how they 
relate to accuracy and robustness, respectively. Section 3 will describe the problems in 
Japanese postal address recognition as an example of a complex recognition task. Then, 
Section 4 will present five design principles to tackle the uncertainty and variability 
problems, followed by Section 5, which presents implementation methodologies.  

2   Uncertainty and Variability 

Uncertainty generally exists in input and in output. As mentioned above, a complex 
recognition task ought to be decomposed into smaller pieces of manageable tasks. So, 
the whole recognition engine should consist of many components, each of which solves 
smaller scale pattern recognition problems. It further means that, because each com-
ponent has an input and an output that holds uncertainty, composition of such 
unreliable components requires a careful design. The question arises of how to combine 
recognition components with their uncertain inputs and outputs are uncertain. If they 
connected in a cascade manner, the accuracy of the final output from 30 such compo-
nents would be 74 %, even when each component’s accuracy was 0.99. Usually, the 
recognition of one postal address requires more than 30 decisions. Furthermore, to raise 
each component’s accuracy above 0.99 is extremely difficult, presenting the necessity 
of good design principles, to be discussed in Section 4.  

Variability, on the other hand, exists only in the input. However, the variability in 
uncontrolled inputs, such as in postal addresses, is nonlinear, discontinuous, structural, 
and unpredictable. To solve the problems of nonlinear, discontinuous, and structural 
variations requires more than a single highly sophisticated parametric method. Usually, 
it requires additional logics (or algorithms) and makes the whole recognition engine 
more complex as a result. The combination of such new logics to other existing parts 
again presents a technical challenge. This holds especially true for variability not 
contained in a single character but apparent in a layout of the character lines and sur-
rounding objects. Such spatial variations of printed/handwritten objects are difficult to 
handle. For example, Japanese mail surfaces have many unrelated, interfering objects, 
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such as advertisements. Recipient addresses are written in several orientations. Finding 
a recipient address is generally difficult.  

Unpredictability of variations, which is a type of uncertainty, influences the develop-
mental methodologies. Concretely speaking, the capture of every (or most of the) 
variation(s) at a single step is almost impossible, and it is difficult to cope with every 
problem stemming from variations in a single algorithm. Questions arise of how to cycle 
the developmental steps, how to organize sample datasets, and how to prioritize the plu-
rality of problems. These questions will be answered in Section 5.  

Another discussion about uncertainty and variability involves their relationship to 
recognition performance. Generally speaking, ‘recognition performance’ has the follow-
ing three aspects:  

• Accuracy 
• Robustness 
• Efficiency 

Accuracy directly reflects the certainty of recognition outputs. Accuracy is measured as 
Nc/N or Nc/(N - Nr), where N is the total number of samples, Nc the number of correctly 
recognized samples, and Nr the number of rejected samples. The latter definition is 
sometimes referred to as reliability. ‘Read rate’ (or recognition rate) is sometimes used 
as a measure of recognition performance, which is defined as Na/N where Na = N - Nr. 
Read rate is used because it can be measured without using ground truth data. Error 
rate, Ne, is measured as either Ne = (N - Nc - Nr)/N or Ne = (Na - Nc)/Na. 

Robustness is a concept not discussed much in the context of recognition perform-
ance. It has not yet been quantitatively defined, but we think that robustness ought to be 
a performance measure. Robustness could be defined as a quantity inversely propor-
tional to the read rate’s (or accuracy’s) degradation against variations. In this paper, 
instead of defining a single quantity, we try to see it as a read rate curve against varia-
tions. Figure 1 shows an example of such read rate profiles of a postal address 
recognition engine. The horizontal axis shows sample dataset numbers, in which the 
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sample datasets have been re-ordered according to their read rates, and the vertical axis 
shows the read rates.  

The mailpiece images forming these datasets were captured from mail sorting ma-
chines in separate sessions. Then, due to the varieties of capturing times, each dataset 
had a different mixture of samples reflecting the operational modes of the post offices. 
Consequently, some datasets were easier to read than others.  

Because the read rate degradation results from variations, we may conclude that 
the flatter the curve, the more robust the recognition engine. At this moment, we do 
not have a theoretical background for seeing the robustness characteristics in this 
manner. However, it is important to note that each dot shows a read rate, which an 
operator (a customer) of the mail sorting machine could see on the control panel. 
Therefore, clearly, flattening these curves is a reasonable target for the developers.  

The third measure, efficiency, as a recognition performance, also presents an im-
portant characteristic, representing recognition throughput per unit computation cost. 
Usually, throughput performance is given as a specification. If latency (recognition 
time) is not a concern, it is a matter of hardware resources and the cost of the system. 
We can achieve higher throughput by adding more hardware in parallel. In the case of 
mail sorting machines, the latency is also important, and therefore, cannot depend only 
on bigger hardware. Recognition algorithms are constrained by the maximum latency 
time. In a complex pattern recognition problem, recognition is a search of an optimal 
interpretation in a huge search space, so the search space ought to be limited optimally 
while maximizing the read rate.  

3   Japanese Postal Address Recognition  

3.1   Machine for Reading Postal Addresses 

Postal address recognition as an application has contributed to the technology ad-
vancement of handwritten character recognition, being technically ‘rich’ and 
semantically ‘rich.’ In other words, it has presented many technical challenges, but the 
domain is limited to postal addresses, which are semantically well defined. The latter 
notion is important because linguistic approaches can be introduced with address 
knowledge to reduce the search space for the optimal interpretation.  

A mail sorting machine (Fig. 2) has the tasks of selecting mail pieces individually 
from the feeder deck, transporting the mail pieces through an image scanner to a sorting 
bin, recognizing the recipient address in the scanned image, and spraying barcodes 
representing the recognized address code. Recognition should be accomplished before 
the corresponding mail piece reaches the barcode printer and the switches that deter-
mine which bin is selected according to the recognition result. A large version of the 
machine has about 400 sorting bins. In the case of the machine shown in Fig. 2, mail 
pieces run at the speed of 3.4m/s, and maximum latency time for recognition is 3.7s. 
The throughput is 30,000 to 50,000 mail pieces per hour, depending on the operational 
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Fig. 2. Mail Sorting Machine (Hitachi) 

 Postal code 

Address phrase 

 

Fig. 3. Mail sample images. (Courtesy of the recipients). 

mode. Approximately, average recognition time of 1.5s using 21 computers can attain 
the maximum throughput.  

3.2   Recognition Task 

The task of postal address recognition is to identify the character lines of a postal code and 
an address phrase, then recognize and interpret them. The output, i.e., the recognition re-
sult, is an address code that designates a delivery point out of 40 million such points in 
Japan. The address code has a variable length digit code, which sometimes includes al-
phabetic information. Its first seven digits equal the postal code, which is written or printed 
in a separate field. With a few exceptions, a Kanji address phrase corresponds to this postal 
code. Therefore, a recognition engine can utilize this redundant information to heighten 
accuracy. The rest of the code has three field numbers, which represents an address point. 
Sample images of Japanese mail pieces appear in Fig. 3. 
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Fig. 4. Recognition components 

The recognition task can be decomposed into four steps: (1) image scanning and 
preprocessing, (2) layout analysis to extract a postal code region and a recipient address 
block, (3) character string recognition and interpretation, and (4) post processing to 
verify the recognition result and complete extra recognition tasks. A block diagram for 
these recognition components is shown in Fig. 4.  

As shown in the diagram, each step consists of subcomponents for solving more fo-
cused pattern recognition problems. Each subcomponent makes a decision. Therefore, 
uncertainty and variability carry over to these levels. For example, in layout analysis, the 
accuracy of line orientation determination from four possible cases of 0°, 90°, 180° and 
270° is not 100 percent. This holds true for other subcomponents, and it becomes more 
difficult when they connect in series. For example, each subcomponent needs to output 
multiple choices for the next step, when the decision is uncertain.  

Some subcomponents connect in a parallel way. It is sometimes necessary to classify an 
input into one of the cases anticipated and to process it differently. For example, problems 
in recognizing handwritten character strings and machine-printed character strings are 
different, so we need to develop separate recognition engines though they are similar in 
their architectures. Character type recognition for this adaptive treatment is also prone to 
error; therefore treatment of uncertainty is necessary here too. When the decision ap-
pears uncertain, multiple hypotheses are generated. Section 4 will describe the 
approaches to uncertainty management more closely.  
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Table 1. Performance Influencing Factors 

Components Performance Influencing Factors 
Optical scanning Low quality printing 

Address written in a dark ink on a dark colored envelope 
Reflecting plastic address window 

Binarization and image coding Low contrast image 
Non-uniform contrast 
Faint/dark printing  
Complex background texture  

Address block location Interfering background such as ads 
Character size variations  
Printing/writing orientations  
Mixture of different orientations 
Irregular address block location  
Interfering sender’s address block  
Window shadow 
Non-square handwritten address block 
Irrelevant numbers in an address block 

Address line segmentation Character size variation 
Overlapping handwritten character lines 
Touching handwritten character lines 
Mixing of different writing orientations 
Shadow of plastic window 
Skewed letter images 

Character segmentation  Touching characters 
Broken characters 
Non-uniform handwritten character size 
Zero-character-spacing  
Underlines 

Character recognition Multiple scripts 
Low quality character image 
Writing style variations 
Peculiar writing variations 
Writing instrument variations 
Extremely small characters  
Mixture of writing and printing 

Character string recognition / 
Address phrase interpretation 

Address expression variations 
Abbreviated address expression 
Incomplete address expression 
Address hidden by a window 
Address hidden by a cancellation stamp 
Extra punctuation 
Wrong address  
Obsolete address 

3.3   Technical Difficulties 

Technical difficulties can be understood in advance only in an abstract way. In order to 
attain a target recognition performance, we need to find concrete difficulties for the 
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target recognition engine to meet. We call such factors the performance influencing 
factors (PIFs). These factors are shown in Table 1 for postal address recognition. To 
solve the problems caused by these factors usually requires additional algorithms in the 
baseline. Some require totally new methods, and others require modifications of ex-
isting algorithms. It is necessary to prioritize the problems by their significance.  

Such problems must be solved on a firm basis supported by good design principles, 
as demonstrated in this paper.  

4   Five Design Principles 

4.1   Hypothesis-Driven Principle 

Resolving input uncertainty must begin with a hypothesis. For example, to locate an 
address block, we need to have line candidates, which require knowledge of the line 
orientation. A dilemma occurs, as line orientation relies on line candidates. To solve the 
dilemma, we can generate hypotheses first and process the input accordingly, then test 
the results. In this example, we first hypothesize horizontal orientation and extract ho-
rizontal line candidates, then try vertical orientation. Then, we can evaluate (or 
compare) the results to determine the correct hypothesis. At the same time, we achieve 
the result. We call this a Hypothesis-Driven approach.  

 

 a) PH: Portrait-Horizontal       b) PV: Portrait-Vertical         c) LH: Landscape- Horizontal   

Fig. 5. Six layout types of the address block 

In reality, address block location is more complex. In the case of Japanese letter enve-
lopes, six layout types exist for each of the handwritten and machine-printed versions (Fig. 
5), with 12 types in total. To cope with this problem, the method we developed hypothe-
sizes the following six types, and evaluates the resulting block candidates based on a 
Bayesian approach [1]. Note the character orientation is determined later by applying 
character recognition.  

• P-PH: Printed portrait horizontal 
• P-PV: Printed portrait vertical 
• P-LH: Printed landscape horizontal 
• H-PH: Handwritten portrait horizontal 
• H-PV: Handwritten portrait vertical 
• H-LH: Handwritten landscape horizontal 



 How to Deal with Uncertainty and Variability: Experience and Solutions 137 

The evaluation of the hypotheses is based on the confidence value, defined as the a 
posteriori probability of the corresponding hypothesis after observing evidence as in 
equation (1). Evidence for each hypothesis, Hk , is obtained as a feature vector ek. The 
features taken are (a) the averages of the height and width of character lines, (b) the vari-
ance of the height and width of character lines, (c) the area of an address block candidate, 
and (d) the position of the candidate. L in equation (1) is a likelihood ratio of hypothesis 
Hk  to null hypothesis H k  and is computed as in equation (2) assuming the statistical in-
dependence among the features. The functions, P(eki | Hk )  and P(eki | H k ) , can be 
learned from the samples.  

P(Hk | ek ) =

P(Hk )

P(H k )
L(ek | Hk )

1+ P(Hk )
P(H k )

L(ek | Hk )

 (1) 

L(ek |H k) = P(ek | Hk )
P(ek | H k )

≅ Π i=1
n P(eki | Hk )

P(eki | H k )
 (2) 

A general scheme for this approach can be diagramed as in Fig. 6. In general, hy-
pothesis generation operates by analyzing the input dynamically. However, in the case 
of address block location, hypotheses are predetermined as described above, so not 
much is done. Preprocessing may reduce the number of hypotheses. Each process, P1 to 
Pn, generates (multiple) candidates of address blocks with the corresponding feature 
vectors ek. Hypothesis testing (the evaluation step) computes the aforementioned  
confidence values and orders the candidates according to those values.  

 

Hypothesis 
generation 

Hypothesis 
testing 

Hypothesis-driven 
processes 

 
 
 
 
: 

P1

P2

Pn

 

Fig. 6. Hypothesis driven approach 

Figure 7 illustrates the address block location process for a simple case. First, based 
on the size of the input image, the type of the letter is determined to be a postcard rather 
than an envelope. Then, connected component analysis applies to the binary image, and 
line candidates are extracted based on the horizontal and vertical hypotheses. In the 
postcard’s case, existence of a message area is hypothesized, and, if true, the message 
area, which is the lower half, is discarded. The upper half then is analyzed for an  
address block.  
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a) Bina  image  b) Connected
    components  

d) Selected line
    candidates  

e) Address block 
    candidate  

c) Line candi-
    dates   

Fig. 7. Address block location process 

4.2   Deferred Decision/Multiple Hypotheses Principle 

The Deferred Decision/Multiple Hypotheses principle is: “Don’t decide when it is 
uncertain. Leave it to other experts. Give options when it is uncertain.”  

Usually, pattern recognition consists of sequential steps of sub-level pattern recognition 
problems, and sequential decision making can be solved by using dynamic programming 
for well-defined problems [2]. However, in the case of Japanese postal address recogni-
tion, such sub-problems are numerous, as listed below, and also require heuristic 
approaches.  

• Line orientation detection 
• Character size (large/small) determination 
• Character line formation and extraction 
• Address block identification 
• Character type (machine-printed/handwritten) identification 
• Script (Kanji/Kana) identification 
• Character orientation identification  
• Character segmentation 
• Character classification 
• Word recognition 
• Phrase interpretation 
• Address number recognition 
• Building/room number recognition 
• Recipient name recognition 
• Final decision making (accept/reject/retry)  

As discussed before, these steps cannot be connected in a cascade manner, forwarding 
only the top choice. If the total number of decisions were 30, the accuracy of 0.99 at each 
step could only produce the total accuracy of 0.74. While attaining the accuracy of 0.99 is 
extremely difficult, it is possible to attain the cumulative accuracy of 0.99 or higher if we 
take multiple candidates. Therefore, the Multiple Hypothesis Principle allows the system 
to propagate multiple hypotheses from component to component. This creates a hierar-
chical tree of hypotheses to search for an optimum solution.  
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So, the next question concerns the method of conducting the search. Among the 
known methods of Hill Climbing Search, Best First Search, Beam Search, and others 
[3], we basically use Hill Climbing Search (with backtracking), by which we can reach 
an ‘optimum solution’ in the shortest time. When the ‘optimum solution’ is rejected at 
the final decision step, where it is verified against an address directory, the second best 
solution is searched. Then, this process repeats while the remaining recognition time 
affords continuation. As an additional variation to Hill Climbing Search, the Beam 
Search, used at the later stages, boosts the recognition accuracy. The use of a Beam 
search at the earlier stages is too costly.  

It is also important to control the number of branches (candidates) so the search time 
will occur within reasonable time bounds. Instead of setting a uniform fixed number for 
the branching factors, we make branches adaptive by comparing the scores of branches 
with absolute and relative thresholds. If the scores at a given stage all exist below an 
absolute threshold, that node is abandoned and backtracked.  

The effectiveness of this approach is shown in Fig. 8, where AB stands for address 
block, MP machine-printed, and HW handwritten.  
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Fig. 8. Relationship between the number of address block candidates and read rate  

A general scheme of this approach is illustrated in Fig. 9. The switches are con-
trolled according to the optimum search strategy.  

 

P (i)  P (i+2)  P (i+1)  

 

Fig. 9. Multiple hypotheses scheme 

4.3   Information Integration Principle 

Today, three types of Information Integration approaches exist. The first type inte-
grates processes to solve several different problems simultaneously, as a single bigger 
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problem. This principle is equivalent to saying, “Solve problems by having experts from 
different fields form a team.” The second type combines different processes to solve 
one problem, as if, “Solve a problem by assigning many same-field experts as a team.” 
The last type seeks more information to heighten the certainty. The following subsec-
tions will describe each of these principles more closely.  

4.3.1   Process Integration  
Historically, segmentation-recognition integration highlights the approach. This technique 
solves the problem of recognition of touching handwritten digits [4]. The segmentation 
component performs hypothetical pre-segmentation and generates a network of segmen-
tation hypotheses. Large connected components are considered to be touching digits, and 
each of them separate into two at the hypothesized points. Uncertainty in touching itself 
and a touching position is managed by multiple hypotheses.  

Recognition-interpretation integration is another two-process integration. If seg-
mentation is reliable, character recognition and linguistic interpretation can integrate 
into one problem-solving scheme. Handwritten Kanji recognition generates a lattice, 
which represents character classification candidates, and the lattice is then transformed 
into a finite state automaton [5]. The automaton can search for valid sequences of 
characters, i.e., words, effectively.  

The most frequently used process integration involves a three-process integration of 
segmentation, character classification, and linguistic interpretation. The approach, 
called lexicon-driven recognition, belongs to this class of techniques, and has been 
successfully used for handwritten check amount recognition and handwritten postal 
address recognition [6-9].  

Input image Segmentation-hypothesis network

Interpretation as 
search process 

Presegmentation with 
touch splitting 

Recognition 
resultPattern classification 

Language model

 

Fig. 10. Segmentation-Recognition-Interpretation Integration 

In this approach, linguistic constraints, i.e., linguistic knowledge, solve the segmenta-
tion uncertainty and the character classification uncertainty at the same time. Linguistic 
constraints limit the search space and guide the search in terms of a language model, such 
as a TRIE structure (Fig. 10) or a Recursive Transition Network representing a context 
free grammar.  
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Then, interpretation of the input is conducted, searching for the path in the seg-
mentation hypothesis network that best matches a path in the tree of the language model 
(TRIE). As the name ‘lexicon-driven’ suggests, the language model guides the search. 
Hypothesizing a character class in the language model, the edges from the current node 
of the segmentation-hypothesis network are evaluated against the hypothesized char-
acter class. If a matched edge gives a score greater than a threshold, this character class 
and the corresponding segmentation edge remain in the search tree, which is a working 
memory to control the search process. A Beam Search can be used as a search control 
strategy.  

In this way, instead of applying character classification to every pre-segmented 
pattern in the network, character matching is done only between the hypothesized 
character class and the patterns on the edges. This efficient search process is quite at-
tractive given the more than 4,000 Kanji character classes in Japan.  

A successful application to Japanese handwritten address phrase recognition is re-
ported in [9]. That method recognizes Kanji address phrases and generates a 7-digit 
code, which corresponds to a postal code. In an experiment on 3,589 actual mail pieces 
and a lexicon containing 111,349 address phrases, the recognition accuracy was 83.7%, 
when error was 1.1% by using a Beam Search. The recognition time was about 100ms 
using a Pentium III/600MHz machine. This method is capable of noise elimination, 
touching character detection, touching character splitting, and partial matching.  

: A node in a search tree as a working memory 
representing a pre-segmentation edge (pattern image 
in this diagram) and a hypothesized branch in the 
language model. 
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Fig. 11. Adaptive search for an address phrase 

This method is also attractive because it can search meaningful patterns (phrases) by 
ignoring noisy portions and irrelevant character strings. It is similar to ‘word spotting’ 
in speech recognition. Figure 11 shows a case where the second and third characters are 
overlaid with a cancellation stamp. In this example, however, the first three characters 
represent a prefecture name, which is redundant. After the first five pre-segmented 
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patterns are rejected in the search process, the successful matching process starts with 
the fourth character (fifth positions from the left) and correctly recognized the city 
name (4th to 6th characters) and town name (7th to 8th characters). Of course, the 
language model should have been arranged to include the shortened phrases (without a 
prefecture name), in addition to the fully expanded phrases (with a prefecture name). In 
reality, it is important to gather such phrasing variations and to include them into the 
model.  

Regarding the language model, the above example uses a TRIE structure but has a 
limitation. When word alternatives, word omissions, and subphrase variations occur, a 
TRIE structure must have subtree repetitions, which sometimes require more memory 
than is affordable. In such a case, we can use recursive transition network models, i.e., 
context-free grammar models [10].  

4.3.2   Combination-Based Integration 
Classifier combination is the second type of Information Integration. It applies the idea 
of applying multiple independent classifiers to the same input, and then combining the 
results for better accuracy [11-13]. We expect classifiers to be complementary in their 
characteristics. Therefore, combining those results can boost the recognition accuracy. 
Differences in the classifiers can be any combination of recognition schemes (statistical 
approaches, structural approaches, neural network approaches, etc.), features (struc-
tural features, mathematical transformation, Gabor filter, directional feature, etc.), 
training samples, etc.  

Known methods for combination work at the abstract level, the rank level, or the 
measurement level, depending on the kind of information used [11]. Abstract level 
combination uses the top candidate of each classifier output to make a final decision. 
Majority voting and Dempster-Shafer approaches are known for implementation. This 
type of combination applies to most of the existing classifier engines because it uses 
only the class labels in the output. Rank level combination uses the ranked lists of 
candidates from all classifiers to re-rank the results. The third kind, measurement level 
combination, additionally uses measurements of classifiers to produce a more reliable 
classification result. Normalized confidence values, computed from the recognition 
score of each classifier (e.g., distance, probability, etc.), are used to obtain a total score.  

4.3.3   Corroboration-Based Integration  
Corroboration is the process of finding additional evidence for a higher certainty, or 
looking for different input information to obtain the same result. One good example is 
bank check recognition, where a legal amount and a courtesy amount are recognized 
and combined to get a more reliable result [14]. Another example is postal address 
recognition. Reading both Japanese 7-digit postal codes and Kanji address phrases, 
which are almost equivalent to each other, can heighten the read rate and accuracy.  

Another example of corroboration in postal address recognition is recognition of a 
recipient’s name (company and/or person’s name) to reduce uncertainty in identifying 
an address point. When address number recognition gives multiple candidate address 
points due to ambiguity, or when room number recognition fails, we can still use the 
partial recognition result for address point candidates. Then, by consulting a directory, 
we can list the candidate recipient’s names. By having these candidate names, the 
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recognition engine can try to recognize a recipient’s name in the mail piece image. As a 
matter of fact, recipient’s name recognition is necessary in cases such as when the 
recognized address point is a place with more than one residence or more than one 
company. This case is not corroboration, however.  

The effectiveness of recipient name recognition is shown in Fig. 12 for corroboration 
cases.  

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Handwritten

Machine-printed

Full address read rate With NR

Without NR  

Fig. 12. Effect of name recognition (NR) 
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Fig. 13. Corroboration schemes 

Corroboration-based information integration can be used in several ways (Fig. 13). 
One is to reduce the error rate for higher reliability, as for bank check recognition. 
Another increases the read rate (accept rate) provided that the error rate does not in-
crease, as for postal address recognition. In either case, the final choice of the two 
objectives is at users’ discretion and depends on the optimization criteria given at a 
higher level.  

4.4   Alternative Solutions Principle 

The alternative solutions principle states, “When a problem is difficult, try different 
approaches as well.” 

Many image level problems exist in postal address recognition, including characters 
that touch each other, underlines that touch characters, window shadow noise, cancel-
lation stamps covering address characters, etc. All of these require special problem 
solving mechanisms. The Alternative Solutions Principle (which we originally named 
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Multiple Solution Principle) provides more than one solution to solve the problem. The 
solutions can be complementary or drastically different from each other.  

For touching characters, there may be two different solutions. One attempts to sep-
arate a touching pattern [4], and the other designs and trains character classifiers to 
recognize a touching pattern as a whole; i.e., a holistic approach. Training the classifier 
is applied against a dataset that includes samples of frequently touching character pairs. 
Touching digit recognition can easily rely on this approach because the number of 
combinations compares favorably to the number of Kanji classes. The two solutions 
then merge for a more reliable recognition result.  

The problems of window shadow noise and underlines (solid and dotted lines) are of 
interest (see Fig. 14 and Fig. 15). These extra patterns interfere with recognition, but, at 
the same time, may help identify the location of address lines. Some Japanese standard 
envelopes have preprinted underlines for address and recipient’s name fields. There-
fore, they give a good clue to locate address character lines. The same holds true for 
window shadows if they form stable contours.  

 

 

Fig. 14. Window shadow noise 

 

 

Fig. 15. Dotted underscore 

So, the alternative solutions on the one hand attempt to detect such lines, and on the 
other, attempt to eliminate noisy solid/dotted lines. Elimination of thin, broken, noisy 
components and recovering a line can be accomplished by applying erosion (thinning) 
and dilation (thickening) processes, respectively. Separate line extraction algorithms 
extract stable solid/dotted lines.  

These two different solutions, implemented as recognition components, generate 
two branches in the hypothesis tree, as described in Subsection 4.2. Then, based on the 
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Hill Climbing strategy, one branch is followed, and, if the final address recognition 
result stemming from this branch is verified, recognition terminates. Otherwise, the 
second branch is followed.  

4.5   Perturbation Principle 

The perturbation principle states, “When a problem is difficult, try to modify it 
slightly.”  

The perturbation principle applied to character recognition is actually not new. In the 
1980s, it was used in commercial OCRs in Japan, where structural character recogni-
tion approaches were used for handwritten digit recognition. If an input pattern was 
unrecognizable due to topological differences, a slight change in images or parameters 
was introduced for another cycle of recognition.  

Recently, the perturbation approach has been studied more systematically [15]. 
Various transformations are applied to an input image to generate slightly ‘perturbed’ 
patterns, assuming these new patterns still belong to the same identity as the original 
one. The same recognition engine then recognizes these perturbed patterns. The rec-
ognition results combine as in a classifier combination. As for transformations, they 
can be morphological operations, such as dilation and erosion, and/or geometrical 
transformations, such as rotation, slant (horizontal/vertical), perspective, and shrink-
ing/expanding transformations.  

The perturbation approach has been applied successfully in Japanese postal address 
recognition as well. We have applied a rotational transformation to a rejected input 
image, which is then placed in the whole recognition process for a second cycle. In 
practice, due to bounds on recognition time, only one or two cycles of perturbation can 
occur. However, we can obtain about 10% improvement on average. It is interesting to 
note that rejection often occurs in the middle of the recognition process, leaving more 
time to compute. When we did not force limitation on the recognition time and applied 
more perturbation operations, which include a rotational transformation, 
re-binarization, and reversing intermediate decisions such as orientation and character 
type, we could show that 53 % of the rejected handwritten addresses could be correctly 
recognized, with about 12 % error.  

To use this approach widely, two practical issues occur; i.e., additional computa-
tional cost and greater chance of errors. For the first issue, in considering the 
continuous computer performance improvements, the perturbation approach seems to 
be very promising. To reduce the number of additional errors, a possible solution could 
involve finding a consistent result in the many recognition results from the different 
perturbations. The methods used in classifier combination can be borrowed to solve 
these problems.  

5   Implementation Methodologies 

5.1   Cycles of Robustness Implementation 

In developing pattern recognition systems, a higher-order consideration, or method-
ology, must exist for improving the recognition performance given unlimited, real 
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samples [16]. It is almost impossible to design the whole recognition system in detail, 
in advance and build it. Unpredictable problems always await us. Therefore, the de-
velopmental process repeats improvements consisting of the steps of acquiring 
samples, evaluating the performance, analyzing the problems, then solving them:  

• Acquire (more) samples and groundtruthing 
• Develop a better/additional method and algorithm 
• Implement the method and algorithm 
• Test and measure performance 
• Analyze error and rejection causes 
• Identify (additional) PIFs 
• Make a plan for the next cycle, including additional sample acquisition and ap-

proaches to attack the identified PIFs 
• Repeat these steps until the performance becomes satisfactory 

The first step of robustness implementation identifies performance influencing 
factors (PIFs), shown in Table 1. It is to know the ‘enemies’ or the technical difficulties 
in reality. The problem is that we can identify such difficulties only after we have a 
recognition engine or a simulator. Difficulties equal weak points in the methods, algo-
rithms, and the available recognition. To identify them, we simulate experiments on a huge 
dataset of real samples. A field test of a prototype engine for more than several months is 
preferred to collect a sufficient number of real samples covering most possible difficult 
cases. Some problems exist in seasonal changes affecting the incoming mail piece streams. 
Another factor that requires us to collect a large number of samples comes from the 
complexity of the system.  

In these cycles, additional sample acquisition is a key to making the whole process 
more efficient and successful. So-called acceleration datasets, covering only problematic 
samples, accelerate the improvement cycles. It is related to active learning or learning 
with queries, which is a hot topic in machine learning [17]. By using a rather small number 
of (problematic) samples, error/rejection cause analysis can be conducted effectively and 
efficiently.  

The cause analysis reveals weaknesses in the existing algorithms, and each problem is 
classified into one of the PIFs. If a new problem occurs, the list of PIFs extends to include 
it. It is important to note that each PIF is given a PIF identification code, and every sample 
in the acceleration datasets associates with one of the PIFs in terms of these codes. In this 
way, when an improved recognition engine is tested against the acceleration datasets, it is 
easy to evaluate the effectiveness of the improvement step. More concretely, we can sta-
tistically estimate the effect of improvement on the targeted PIFs, and we can prioritize the 
improvement strategies.  

The improvement processes, in terms of refined and/or additional algorithms, naturally 
make the recognition engine more complex, by introducing more subcomponents. The 
described design principles alleviate complexity problems and make the improvements 
more effective.  

In an actual project running these cycles, issues exist, such as project manage- 
ment, which includes software and human factors. Some discussions drawn from our 
experience is located in [18].  
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5.2   Sample Datasets 

Again, the samples that cover the PIFs are the keys for success, but collection of samples is 
a laborious, repetitive task. Their width and depth vary depending on the progress of the 
development and on the problems. Development may start with a small number of sam-
ples, but difficult problems require more samples.  

In general, four kinds of datasets are required:  

• Validation datasets 
• Training datasets 
• Test datasets 
• Acceleration datasets 

The validation datasets are used for selecting an approach, architecture, and algo-
rithms from their alternatives, while the training datasets tune the parameters of the 
recognition components. These datasets need to be devised so each recognition com-
ponent can use them effectively. For example, there should be datasets specially 
arranged for algorithms of address block location, address line segmentation, character 
string recognition, etc. In other words, these datasets are the intermediate data.  

The test datasets, which should not be used for training, evaluate the recognition 
performance as a whole. It is recommended for the test samples to remain in multiple 
datasets. It is not appropriate to mix batches of collections into a huge dataset. Such 
discipline is not only convenient for experiments, but also essential for evaluating the 
profile of the recognition performance (Fig. 1). For postal address recognition, mail 
pieces to be sorted have different characteristics depending on the operational time of 
the day, week, or month. For example, delivery sequence sorting is done in the early 
morning, outward dispatch sorting during the day, and bulk mail (business mail) sorting 
in the afternoon. The same holds true for seasons and areas. Therefore, sample images 
from different time zones can form separate batches. By doing so, each batch of sam-
ples may reveal performance differences, and possibly locate problems seen from the 
customers’ viewpoint.  

The acceleration datasets play a major role in robustness implementation. They 
contain the datasets of “live images” that have been rejected by the recognition engine, 
where, by definition, live images are sample images captured during the system op-
eration. By using these problematic image samples, the cost of groundtruthing, 
analyzing, and identifying major PIFs can be minimized. This strategy parallels that of 
active learning, where additional samples are acquired, and most informative samples 
are selected for additional classifier training [17].  

5.3   Basic Tactics for Improvements 

In building the recognition engine, control of errors and rejections requires attention. 
Although error and rejection can be traded against each other, we should note that it is 
difficult to convert an erroneous answer into a correct one by a single improvement 
step. Therefore, the basic tactic remains the exterminate errors. To do so, we can set the 
thresholds high so the errors become rejections. Then, we try to change the rejections 
into correct answers.  
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In the following, we discuss the tactics more concretely. To do so, we first classify 
the final recognition results into the following seven classes:  

• C: Correct acceptance 
• R1: Rejection due to competing candidates having close scores 
• R2: Rejection due to the top candidate having a low score 
• R3: Rejection due to an empty candidate list 
• E1: Error due to the right candidate being lost in competition 
• E2: Error due to the right candidate having a low score 
• E3: Error due to the right answer not appearing in the candidate list 

When we have E1 or R1, the absolute score values of the top choices are sufficiently 
high, or at least within a permissible range, but competing (wrong) candidates exist 
also. In this case, the plan is to change the relative threshold parameters to convert the 
E1 case into R1, and to train the classifiers further to convert R1 into C. When we have E2 
and R2, the plan usually involves re-training the classifiers because we have the right 
candidate but with a low score. (A ‘low score’ means the score is less than an absolute 
threshold.) However, when we have E3 and R3, something went wrong somewhere, pos-
sibly in the earlier stages, because no right candidate is given. So, we need to find the 
‘problems’ and convert E3 and R3 at least to R1 or R2. (A rejection by the directory veri-
fication is classified as R3.) The ‘problems’ are usually diverse, coming from PIFs as 
shown in Table 1. In either case, the threshold values (absolute and relative) should be 
reviewed to see if they could become rejections.  

In the case of ‘semantically rich domains’ like postal address recognition, we can keep 
the errors low by consulting with a directory, and we can have many R2 and R3 rejec-
tions, instead. To repeat, it is crucial to turn errors into rejections by keeping the right 
candidate always in the hypotheses. If we succeed, the improvement process may 
proceed in a positive, straightforward way. So, the tactic reduces the error rate, first, 
giving more rejections, then raising the correct rate.  

5.4   Example Case 

In this section, we demonstrate a real example of robustness implementation. It is the 
development of a Japanese postal address recognition engine used in a Hitachi Mail 
Sorting Machine (Fig. 2). The data shown here comes from the software simulation ex-
periments in the laboratory.  

Read rate profiles of handwritten postal address are shown in Fig. 16 for four software 
versions, V1 through V4. They are from Oct. 1997, Nov. 1997, Mar. 1998, and Jun. 1999, 
respectively. The average and the standard deviation of the read rates for the same four 
versions are also plotted in Fig. 17, where AV and SD represent the average and 
standard deviation; BK, MP, and HW stand for bulk mail (business mail), ma-
chine-printed mail, and handwritten mail, respectively. Robustness, defined as the 
standard deviation of read rates against a number of sample datasets, as shown in these 
figures, has not improved much, except for bulk mail (BK).  
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Fig. 16. Read rate profiles for handwritten datasets 
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Fig. 17. Read rate improvements 

6   Conclusion 

This paper has discussed approaches to attacking uncertainty and variability, which 
present the main themes of pattern recognition. These relate to accuracy and robust-
ness, respectively. We have identified and explained five design principles to tackle 
these common problems of pattern recognition. These principles are:  

• Hypothesis-driven principle 
• Deferred decision/Multiple hypotheses principle 
• Information integration principle 
• Alternative solutions principle 
• Perturbation principle 



150 H. Fujisawa 

Among these, information integration has been studied intensively in this research 
community. It includes three approaches: (a) Process integration, (b) Combina-
tion-based integration, and (c) Corroboration-based integration. These principles have 
been explained by relying on the examples from our experience in the development of a 
Japanese postal address recognition engine.  

This paper has shown how to combine recognition components (and subcompo-
nents) to make the whole. As discussed, each component receives an input, which is 
uncertain, and produces an output, which is also uncertain. Simple combination does 
not produce satisfactory recognition results. The above principles help solve this 
combination problem.  

Variability in input patterns usually directs our eyes to classifiers, but it should direct 
us, at a higher level, to a better developmental process of a recognition system. De-
veloping a recognition system with sufficient recognition performance is not a simple 
process. This paper has discussed these higher-level issues.  

In conclusion, comprehensive approaches are mandatory to build an industry 
strength system. No single solution can be prescribed for high accuracy and high  
robustness.  
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Abstract. In this paper, we introduce an efficient clustering based
coarse-classifier for a Chinese handwriting recognition system to acceler-
ate the recognition procedure. We define a candidate-cluster-number for
each character. The defined number indicates the within-class diversity of
a character in the feature space. Based on the candidate-cluster-number
of each character, we use a candidate-refining module to reduce the size
of the candidate set of the coarse-classifier. Experiments show that the
method effectively reduces the output set size of the coarse-classifier,
while keeping the same coverage probability of the candidate set. The
method has a low computation-complexity.

1 Introduction

For Chinese character recognition systems, a coarse classifier prunes the search
candidates of the fine classifier based on a complex feature. It accelerates the
recognition procedure of a system. The coarse classifier technique has been widely
used in many practical systems. T.S Lin, et al. presented a coarse-classifier using
structure-based features [6]. S.R. Lay, et al. introduced a radical-based coarse-
classifier method [7]. Y.Y. Tang provided an overlap clustering based method and
proposed a group classifier concept [8], and Y. Yang provided a coarse-classifier
method using pivots [11].

A typical coarse classifier method is a clustering based method. In this method,
all characters gather into a few clusters. Each cluster covers an amount of charac-
ters, which are denoted as member-characters of their own cluster. When a sample
inputs into a recognition system, the coarse-classifier selects the first n nearest clus-
ters of the input as candidate-cluster [11]. The system sets the member-characters
of these clusters as a candidate set for the following fine-classifier.

In a clustering based Chinese coarse-classifier, in order to achieve the same
predefined correct coverage-rate, different characters need different numbers of
candidate-clusters, because the within-class diversity of each character is
different.

D.S. Doermann and S. Jaeger (Eds.): SACH 2006, LNCS 4768, pp. 152–160, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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In this paper’s methodology, we calculate a candidate-cluster-number for each
character. The number serves as a measure of the within-class diversity of the
character’s feature space. Based on such numbers of each character, we reduce
the size of the candidate set of the coarse-classifier. The experiments section of
this paper shows that the proposed method effectively reduces the size of the
coarse-classifier. The computation-consumption of the method is low.

The paper is organized as follows. Section 2 introduces the workflow of a con-
ventional clustering-based coarse-classifier in detail. In Section 3, we describe our
candidate-set size reduction method. In Section 4, we provide the experimental
result. In Section 5, conclusions are stated.

2 Clustering-Based Coarse-Classifier

The clustering method is a fundamental technique of pattern recognition [1,2,3,
4,5,9]. In [10], T.Kanungo provided the latest achievement of a K-means cluster
method.
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Fig. 1. Workflow of a clustering-based coarse-classifier

Figure 1 shows the workflow of a clustering based coarse-classifier. In the
training procedure, firstly, the system calculates one or several templates (cluster
center of feature vectors) for each character. Based on these templates, it then
creates a small number of clusters, and allocates each template into its nearest
cluster. So, a cluster covers the templates of several characters. We name the
cluster as the owner-cluster of its covered characters, and denote its covered
characters as the element-characters.

When a sample is entered, the coarse-classifier calculates the similarity be-
tween its feature and each cluster’s center. Then, these similarities are sorted
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in descending order. Finally, the first n nearest clusters are selected as the
candidate-clusters of the input, and the element-characters of these n clusters
comprise the candidate set of coarse-classifier.

In the sorted clustering list, we denote oclust(i) as the order-number of the ith

cluster for the input sample. Let us call oclust(i) the similarity-order of the ith

cluster. The term will be used in the next section.

3 Candidate Set Size Reduction Method

In this section, we describe how to reduce the size of the candidate set by im-
plementing a feature distribution property of characters.

3.1 Feature Distribution Property of the Element-Characters of a
Cluster

Let hitr be a hit-rate of a coarse-classifier. It is a probability that the candi-
date set of the coarse-classifier contains the ground-truth of the input samples.
Equation 1 shows the definition of the hit-rate.

hitr =
Ccr

Csum
(1)

where Ccr is the counts of samples that are correctly covered by the candidate
set of the coarse-classifier, and Csum is the total number of samples in a test set.

As mentioned in Section 2, in the conventional clustering based coarse-
classifier method, the system selects a uniform number of candidate-clusters to
construct a candidate set. In fact, to obtain a predefined hit-rate, different char-
acters need different numbers of candidate-clusters. Some characters can reach
a high hit rate by selecting a small number of nearest clusters. This happens
because within-class diversity of each character is different.

Figure 2 provides an intuitive description for within-class diversity of different
characters. In Fig. 2, the dash-line ellipses show the boundary of the feature space
of characters 1, 2 and 3. The black dots are the templates of each character.
Solid-line ellipse and circle represent the boundary of each cluster. The black
cross (‘+’) marks the center of each cluster. In this figure, character 1 is an
element-character of cluster A, and its feature space has a small within-class
diversity. The features of all samples of character 1 appear very close to the
center of the cluster A. So for character 1, we need to select the first 1 nearest
cluster as candidate-cluster, and the hit-rate of the coarse-classifier is 100%. For
character 3, however, it is an element-character of cluster C, and its feature
space has a large within-class diversity. For samples in the lower-left area of
character 3, cluster C is the 3rd nearest cluster. So, to achieve a 100% hit-rate,
character 3 should select the first 3 nearest clusters as candidate-clusters of the
coarse-classifier.

Based on Fig. 2, we draw the following hypothesis. If the within-class di-
versity of a character’s feature is small, the character needs a small number of
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candidate-clusters to obtain a high hit-rate. Otherwise, it needs a larger number
of candidate-clusters to achieve a similar hit-rate.

3.2 Candidate-Set Refining Method Using a Feature Distribution
Property

In a large training set, let phit be a threshold of the hit-rat for each character,
and suppose the value of phit nears 100%. As mentioned in 3.1, to achieve the
hit-rate phit, each character needs a different number of candidate-clusters in
the coarse-classifier. Let ordmax(P ) denote the number of candidate-clusters for
a character P , which guarantees that the hit-rate of character P equals phit. We
call ordmax(P ) the candidate-cluster-number of the character P .

In the data structure of a cluster of the coarse-classifier, we store not only the
element-character index of the cluster, but also the candidate-cluster-number of
each character. The system uses the candidate-cluster-number of each character
to refine the candidate set of the coarse-classifier. Suppose an input is a sample
from character P and the owner-cluster of P is the ith cluster. Let oclust(i) be
the similarity-order of the ith cluster. Because the value of phit nears 100%, for
training samples of the character P , a very high possibility exists that Eq. 2
holds.

oclust(i) � ordmax(P ) (2)

Let n be the average number of candidate-clusters of the training set. When a
sample is entered, suppose the ith cluster is one of the first n nearest clusters
of the sample, and character P is the element-character of the ith cluster. If
oclust(i) is larger than ordmax(P ), the possibility that the input is a sample of
character P is very low. Then, we remove the character P from the candidate
set of the coarse-classifier. This is a basic method through which we refine the
candidate set.

Figure 3 shows the workflow of the candidate-set refining method. When a
handwriting sample enters the recognizer, the coarse-classifier extracts the first
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n nearest clusters, where n is the average number of candidate-clusters. For each
element-character of the n nearest clusters, we compare its ordmax with the
ordclust of its owner-cluster. If the ordclust of its owner-cluster is larger than
its ordmax, we remove the element-character from the candidate set. Finally, we
reduce the size of the candidate set of the coarse-classifier in this way by using
a candidate-set refining model.

When the size of a training set increases, the value of the cluster-candidate-
number based on the training set can be implemented by an independent test
set. Experiments show that the proposed method has a good generalization
property.

4 Experiments

The database used in our experiments contains 3755 daily-used handwritten
Chinese characters. We separate these samples into a training set and a test set.
In the training set, there are 1,169,209 samples. Each class has more than 300
samples written by different people. In the test set, each character has 50 sam-
ples. In our experiment, the feature vector of the coarse classifier is a compressed
stroke-direction feature with 80 dimensions. The clustering method is based on
the LBG algorithm [9].

First, we show the results for the training data. Then, we provide the result
for test data. For the independent test set, the result shows the generalization
property of the method.

For the clustering based coarse-classifier, clustering is based on the templates
of each character. For each character, the number of templates can be set to one
or several. The number of templates of each character has an effect on the size
of the candidate-set. For the test data, we discuss the results of single-template
based clustering and multi-template based clustering, respectively. Furthermore,
we discuss how to select the value of phit.
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4.1 Results for the Training Set

Table 1 shows the results of the training set. We list the results for the coarse-
classifier applying different total numbers of clusters. Here, the value of phit is
set as 0.996. Let numsum and numcan be the total number of clusters and the
number of candidate-clusters used in the coarse-classifier, respectively. In this
section’s tables, the original method stands for the method without a candidate-
set refining module. Experimental data in Tab. 1 shows that, for a different
total number of clusters, the method reduces the size of the candidate-sets while
maintaining the hit-rate.

Table 1. Results of the training set: original method and the method in this paper

Method numsum Hit Rate numcan Candidate set size

Original method 64 99.10% 9 670
128 99.03% 12 458
256 99.06% 15 282
512 99.05% 17 181

Method in this paper 64 99.09% 12 525
128 99.04% 15 339
256 99.06% 19 225
512 99.05% 22 154

4.2 Results for the Test Set

To evaluate the method’s generalization property, we test the proposed method
using an independent test set. For all experimental data in Section 4.2, the value
of phit is set as 0.996.

Clustering Based on a Single-Template of Each Character. In the ex-
periments in Tab. 2, the clusters of the coarse-classifier use a single-template
of each character. The data in Tab. 2 shows, for the single-template case, the
proposed method reduces the size of the candidate-set for the test set.

Clustering Based on Multi-Templates of Each Character. In our ex-
periment, for the multi-template case, if several templates of one character fall
into the candidate set of a coarse-classifier, the candidate set’s size just adds 1
when we calculate its size. Table 3 and 4 use the rule to calculate the size of the
candidate set.

Tables 3 and 4 compare the results of the original and proposed method for
the multi-template case. For the experiments of Tab. 3, each character has two
templates when we conduct clustering. For Tab. 4, the template-number of each
character is four. Data in Tab. 3 and 4 show that, in the multi-template case,
the proposed method reduces the size of the candidate-set.
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Table 2. Results of a test set: clustering based on a single-template of each character

Method numsum Hit Rate numcan Candidate set size

Original method 64 99.14% 9 639
128 99.04% 12 421
256 99.04% 15 262
512 99.05% 18 159

Method in this paper 64 99.14% 12 542
128 99.04% 15 359
256 99.04% 19 230
512 99.05% 23 147

Table 3. Comparison of the results where each character has two templates

Method numsum Hit Rate numcan Candidate set size

Original method 128 99.09% 10 382
256 99.09% 12 232

Method in this paper 128 99.09% 13 340
256 99.09% 17 218

Table 4. Comparison of the results where each character has four templates

Method numsum Hit Rate numcan Candidate set size

Original method 128 99.10% 8 357
256 99.01% 9 204

Method in this paper 128 99.09% 9 319
256 99.02% 10 189

From the data of Tab. 2, 3 and 4, we can find that by increasing the total
cluster number, it weakens the advantage of the proposed method. In the coarse-
classifier, however, the number of clusters should not be very large. Otherwise,
the coarse-classifier will take much computation time. So, the proposed method
in the paper is useful in constructing an efficient coarse-classifier.

4.3 Selection of the Hit-Rate Threshold When Calculating the
Candidate-Cluster-Number

In this paper’s method, the value of phit is crucial for the final results. It affects
the value of the candidate-cluster number of each character. Figure 4 shows the
hit-rates of a test set for different values of phit in the training procedure. For all



An Efficient Candidate Set Size Reduction Method 159

0 5 10 15 20 25
93

94

95

96

97

98

99

100

H
it−

ra
te

(%
)

Number of Candidate−cluster

Original method
New method: p

hit
=100%

New method: p
hit

=99.4%

New method: p
hit

=99.0%

Fig. 4. The upper bound of hit-rate for different phit

100 200 300 400 500 600
95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

Size of Candidate Set

H
it−

R
at

e(
%

)

Original method
New method: p

hit
=100%

New method: p
hit

=99.4%

New method: p
hit

=99.0%

Fig. 5. The relation between hit-rate and the size of candidate-set for different phit

experiments in Section 4.3, the number of total clusters of the coarse-classifier
is 128.

The curves in Fig. 4 show the value of phit as the upper bound of the hit-
rate for the proposed method. If a recognition system requires a high hit-rate,
phit should be set at a high value. Even when phit is set as 100%, for the test
set, the hit-rate of the proposed method degrades compared with the original
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method. It means that the sample of training data does not cover all the possible
boundary-cases of a feature space. So, a large training set is crucial for the
proposed method.

Figure 5 shows the relationship between the hit-rate and the candidate-size
for different values of phit in the training procedure. Fig. 5 shows, smaller phit

reduces more element-characters from the candidate-set. When the system uses
a small phit, it can’t achieve a high hit-rate because the value of phit is the upper
bound of its hit-rate. So the selection of phit is a trade-off between the upper
bound of the hit-rate and the reduction of the candidate-set.

5 Conclusion

In this paper, we provide an efficient candidate set size reduction method for the
coarse-classifier. The method implements the feature distribution information of
each character. It defines a candidate-cluster-number of each element-character.
Using the number, we refine the selected candidate-clusters to reduce the size
of the candidate set. Experiments show the method has a good generalization
property. Compared with conventional methods, it adds very little computational
consumption and ROM storage size.
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Abstract. Given the large number of categories, or class types, in the Chinese 
language, the challenge offered by character recognition involves dealing with 
such a large-scale problem in both training and testing phases. This paper ad-
dresses three techniques, the combination of which has been found to be effective 
in solving the problem. The techniques are: 1) a prototype learning/matching 
method that determines the number and location of prototypes in the learning 
phase, and chooses the candidates for each character in the testing phase; 2) 
support vector machines (SVM) that post-process the top-ranked candidates ob-
tained during the prototype learning or matching process; and 3) fast fea-
ture-vector matching techniques to accelerate prototype matching via decision 
trees and sub-vector matching. The techniques are applied to Chinese handwritten 
characters, expressed as feature vectors derived by extraction operations, such as 
nonlinear normalization, directional feature extraction, and feature blurring. 

1   Introduction 

The support vector machine (SVM) classification method (Cortes and Vapnik [1]) 
represents a major development in pattern recognition research because it produces 
highly accurate results for optical character recognition (Vapnik [2]). In applying SVM to 
Chinese character recognition (CCR), however, we face a challenge given the large 
number of class types (at least 3,000) in the Chinese language. 

SVM is essentially a method of binary classification, (in which each object is classified 
as one of two classes). When dealing with a multi-class classification, in which each object 
is classified as one of m classes, where m > 2, the problem must be decomposed into binary 
classification sub-problems, and the SVM method can be applied to the sub-problems. 

Two possible ways exist to decompose the problem: one-against-others (Bottou, et al. 
[3]) and one-against-one (Knerr, et al. [4] and Platt [5]). In the former approach, we train 
m SVM classifiers, each of which classifies a sample (character) as A or not A, where A is 
one of the m class types. In the latter approach, we train m(m-1)/2 class types, each of 
which classifies a sample as A or B, where A and B are any two class types. The 
one-against-others approach is computationally costly in terms of CCR training, since 
it constructs m classifiers, each derived from n training samples, where n is the number 
of training samples. The one-against-one approach also costs in terms of training, since 
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it constructs m(m-1)/2 classifiers; however, each classifier derives from a smaller set of 
training samples. 

To cope with the size of the CCR application, we propose a novel decomposition 
scheme. First, we use a prototype learning method (Chang, et al. [6] and Chou, et al. 
[7]) to reduce the number of training samples to a much smaller set of prototypes. We 
assume that Chinese characters are represented as d-dimensional feature vectors. 
Therefore, the resultant prototypes are also d-dimensional, and they decompose the 
feature-vector space into disjoint domains of attraction (DOA)1, where the DOA of a 
prototype p is defined as the set of feature vectors that find p as the nearest prototype. 

This decomposition scheme can be useful to SVM. In the training phase, we collect 
the pairs, referred to as confusing pairs, of class types that are the top-k1 candidates of 
some training samples. We then construct SVM classifiers for these pairs. In the testing 
phase, when a test character x is given, we collect the top-k2 candidates of x and apply 
SVM classifiers to the confusing pairs found among the candidates. We then apply a 
simple voting scheme to re-arrange the involved candidates of x. 

To reduce the number of CCR candidates further in the testing phase, we can com-
bine of the following methods (Liu, et al. [8]). The first method employs multiple 
decision trees to determine the candidates collectively for each test character. The 
second method employs sub-vector matching in a few intermediate steps, using a subset 
of features in each step. A decision tree then decomposes the feature space into disjoint 
hyper-rectangles, each of which associates with a number of candidates. Since multiple 
trees are used, we rely on a voting scheme to decide the candidates for the next step, 
which uses sub-vectors to further reduce the computational cost of matching test char-
acters with prototypes. 

The remainder of the paper is organized as follows. Section 2 contains the learning 
algorithm for constructing prototypes out of training samples. In Section 3, we describe 
the post-processing technique that uses SVM in the training and testing phases. Section 
4 discusses the methods that accelerates prototype matching, and Section 5 details the 
experiment results. Finally, in Section 6, we present our conclusions. 

2   The Prototype Learning Algorithm 

The prototype learning algorithm (PLA) described in this paper is a special version of 
the adaptive prototype learning (APL) algorithms detailed in Chang, et al. [9]. In fact, 
the PLA is a simple version of APL, but, unlike general APL, it does not involve any 
parameters, and thus avoids high computational cost of searching for optimal parameter 
values. PLA represents a rather fast and reasonable way to decompose the feature 
vector space so we do not have to spend too much time on the expensive optimization 
process. 

We assume n training samples (x1, y1), …, (xn, yn) drawn independently from the set 
Rd×Λ according to the same distribution, where Λ = {1, 2,…, m} is a set of labels or 
class types. Prototypes also lie in Rd, but they are not necessarily training samples. 
Moreover, each prototype associates with a label that is also a member of Λ. Two 
entities (samples or prototypes) are regarded as homogeneous if they have the same 

                                                           
1 They are also called Voronoi cells in the literature. 
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label, or heterogeneous if their labels are different. When given a set of prototypes, we 
say that a sample x is absorbed, if 

 

0  |||||||| >−−− pxqx ,                                                        (1) 
 

where p is the nearest homogeneous prototype to x, and q is the nearest heterogeneous 
prototype. 

The steps of PLA follow: 

P1 Initiation: For each label y, initiate a y-prototype as the average of all y-samples.  
P2 Absorption Check: Check whether each sample has been absorbed. If all samples 

have been absorbed, terminate the process; otherwise, proceed to the next step. 
P3 Prototype Augmentation: If there are still un-absorbed y-samples, select one and 

apply the fuzzy c-means (FCM) clustering algorithm to construct clusters, using 
the selected y-sample and all existing y-prototypes as seeds. Return to P2 to 
proceed. 

Selection of Unabsorbed Samples in P1 and P3: In P1, a y-sample is selected as 
follows. We let each y-sample cast a vote to its nearest y-sample, and select the one that 
receives the highest number of votes. In P3, an unabsorbed y-sample is selected as 
follows. Let Ψy = {xi: l(xi)=y & xi is unabsorbed}, where l(x) is the label of an arbitrary 
x. We let each member of yΨ  cast a vote for the nearest member in this set. The se-

lected y-sample is the member of yΨ  that receives the highest number of votes. 

Fuzzy c-means in P3: In FCM [9-10], the objective function to be minimized is 
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where iju is the membership grade of sample jx  to prototype ic . Using the Lagran-

gian method, we can derive the following equations: 
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for i = 1, 2, …, I, and j = 1, 2, …, J respectively. FCM, a numerical method, finds a 
locally optimal solution for (4) and (5). Using a set of seeds as the initial solution 
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convergence of FCM, we require the process to stop when the number of iterations 

reaches 30, or ∑ =
=−I

i

new
i

old
i1

0|||| cc . 

The prototypes are thus the cluster centers computed by FCM, which are the 
weighted sum of all the samples. For this reason, it is possible that the iterative process 
in steps P1 to P3 could continue to construct new prototypes and never converge [7]. To 
remedy this problem, we modify P3 . 

Recall that in P3, we employ FCM to compute a set yΛ of y-prototypes, using an 

un-absorbed y-sample x and existing y-prototypes as seeds. For each p in yΛ , let Dy(p) 

be the set of y-samples for which p is the nearest y-prototype. If there exists any p in 

yΛ , for which Dy(p) is empty, we declare x to be a futile sample. If a sample is declared 

futile in an iteration, it will not be used as a sample in any subsequent iteration. This 
modification of P3 ensures the convergence of PLA [9]. 

3   SVM for Post-processing 

When given a set of prototypes, we define the top-k candidates of a sample x as the 
top-k class types found within the prototypes, which are sorted according to their dis-
tances from x. We may have to search for more than k nearest prototypes to obtain the 
top-k candidates, because two different prototypes could bear the same class type. We 
then collect the pairs (Ci, Cj), where Ci and Cj are, respectively, the ith and jth candidates 
of x for 1 ≤ i, j ≤ k. Note different values of k can be chosen in the training and the 
testing phases. We assume that k1 and k2 candidates are selected in the training testing 
phases, respectively. 

For each confusing pair (C, D), the samples of C and D are labeled, respectively, as 1 
and –1. The task of the SVM method is to derive from the C- and D- training samples a 
decision function f(x) in the following form. 
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where si are support vectors, iα  is the weight of si, β is the biased term, yi is the label of 

si, i = 1, …., I, and K(·, ·) is a kernel function. The character x is classified as a C- or D- 
object, depending on whether f(x) is positive or negative; details are given in [2]. For 
our application, we adopt the kernel function: 

 

δ)1   ,( ) ,( +><= xsxsK ,                                                (7) 
 

where >< xs   , is the inner product of s and x, and δ is the degree of the polynomial 
kernel function. 

In the testing phase, for a character x, we first use the prototype-matching process to 
find k2 candidates for x. We then compute the decision functions associated with all 
confusing pairs found within the top-k2 candidates of x. If a confusing pair (C, D) is 
found among the candidates, and x is classified as a C-type, then C scores one unit. The 
candidate with the highest score ranks first, the candidate with the second highest score 
ranks second, and so on. If two candidates receive the same score, their relative  
positions remain the same. We then rearrange the involved candidates according to 
their assigned ranks. 
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Note, three parameters are involved here: δ, k1 and k2. To determine their values, we 
require a set of samples in addition to the set used for training. This new set is called 
validation data. We use the training data to construct SVM classifiers for various 
values of δ and k1 and the validation data to compute the accuracy rates of the classifiers 
under different values of δ and k1, using k2 candidates for each test sample. In so doing, 
we can find the best combination of values for δ, k1 and k2. 

4   Acceleration of Prototype Learning 

Two methods are used to accelerate matching samples with prototypes: multiple trees 
and sub-vector matching. They have advantages and disadvantages. The tree method, 
for example, is fast, but has a high risk of excluding the nearest known objects from the 
candidate list given a short list. In contrast, with the sub-vector matching method, in a 
lower risk exists of minimizing the candidate list, but the computational cost is high. 
One way to maximize the benefits of both methods, we combine them as follows. First, 
we use the tree method to reduce the number of candidates substantially, then apply the 
sub-vector method to the remaining candidates to find the nearest known object. 

4.1   Multiple Trees 

Each decision tree is a CART (Breiman, et al. [10]) or a binary C4.5 tree (Quinlan [11]). 
On each node of the tree, the feature and the split point is chosen to maximize the 
reduction of impurity [10]. With such a tree structure, we must resolve three issues: 1) 
how to grow multiple trees, instead of a single tree; 2) how to know when to terminate 
the tree; and 3) a mechanism to retrieve candidates from the multiple trees. 

With regard to the first problem, suppose the training samples are expressed as 
d-dimensional feature vectors, and we decide to grow t number of trees. We divide each 
d-dimensional vector into t times e-dimensional sub-vectors so dte ≥× . If the equal-
ity holds, the t sub-vectors will not share any features; otherwise, they will overlap 
partially. The training samples then split into t sets of sub-vectors and each set is input 
to a tree. When the tree-growing process has been completed, we store at each leaf the 
class types of the samples that have reached that leaf. 

For the second problem, we do not want to grow a tree to many levels, since the 
further we go, the smaller the leaves, and the greater the risk of losing critical candi-
dates. Suppose the input samples are e-dimensional vectors, and the total number of 
training samples is n. One way to limit the growth of the tree is to stop splitting all 
nodes at level l, where el ≤≤1 , and count the root level as 1. However, it is unrea-
sonable to require that all paths stop at the same level l, thereby generating leaves of 

various sizes. Instead, we limit the size of leaves to 12/ −= lnu  because, if a tree ter-
minates at level l, the average leaf size of the tree will be u. Therefore, if a node con-
tains less than u samples, we do not split it further. Since the value of u depends on that 
of l, we write it explicitly as u(l). The optimal value of l is determined in the procedure 
for solving the third problem, i.e., candidate retrieval. 

To retrieve candidates from multiple trees, we first grow t trees, in which the leaf 
sizes are bounded from above by u(l). We then assume that a training sample is input to 
these trees and locates on the leaf iL  of tree i, i = 1, 2, …, t. For each class type C stored 
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on these leaves, we define its vote count as the number of leaves on which it is stored. 
We then take the candidate list as the set of C, whose vote count exceeds v, i.e., 

 

})(_:{) ,(_
1

vCcountvoteLCvlListCandidate
t

i
i ≥∈=

=
∪ .                   (8) 

 

The optimal values of l and v are determined by means of the validation data (cf. 
Section 3). We first compute the accuracy rate Rprototype, defined as the proportion of 
validation samples that match in class type with their nearest prototypes. This repre-
sents the accuracy rate we obtain without multiple trees. To obtain the accuracy rate 
with multiple trees, we first grow multiple trees that terminate at leaves no larger than 
u(l). We then input the validation samples into the trees to obtain the accuracy rate 
Rtree(l, v), defined as the proportion of validation samples, whose class types fall within 
Candidate_List(l, v). We choose l and v such that 

 

prototypetree RvlR ≥),( .                                                                                          (9) 

The set Θ of ),( vl  that satisfies (9) is never empty, since )1 ,1(  is in Θ. The optimal 

choice of ),( vl  is then the pair in Θ that maintains the minimal size of Candi-

date_List(l, v). 

4.2   Sub-Vector Matching 

When we input a test character to the multiple trees, we retrieve from the trees the 
prototypes with class types that fall within Candidate_List(l, v), for the optimal value of 
l and v. To avoid wasting time on unlikely candidates, we take the following interme-
diate steps, each of which performs sub-vector matching. 

The first step handles sub-vectors of length d1, the second step handles sub-vectors 
of length d2, and so on, where d1 < d2 < … < d. At the end of each step, the prototypes 
whose distance to the unknown object falls below a certain threshold are input to the 
next step for further processing. In the last step, full-length vectors are matched and the 
nearest prototypes are output. Two elements must be determined for each step: the 
feature types included in the sub-vectors and the threshold. 

We first sort all feature types by means of their information gain [8, 11]. Then, we 
employ the features of the top-d1 ranks in the first step, and the features of the top-d2 
ranks in the second step, and so on. 

In the sub-vector matching method, we must determine three elements: the quantity 
of steps we need to perform, the dimension of the sub-vector used in each step, and the 
threshold associated with this dimension. Let us assume that the dimension is given, 
and we want to determine the threshold associated with it. Again, we use validation 
data for this purpose. We pass the validation samples through full-vector matching as 
well as sub-vector matching, because we want to set the threshold in such a way that the 
two matching approaches achieve a comparable performance. 

To ensure a robust performance, we associate a threshold with each sample s as 
follows: 

 

,_)1( _),( DistMin-λDistAvgThreshold ×+×= λλs                     (10) 
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where λ is a value between 0 and 1, Avg_Dist is the average sub-vector distance be-
tween x and all prototypes, and Min_Dist is the minimum sub-vector distance. If p is a 
prototype with |||| xp − < ),( λsThreshold , p is said to be λ-acceptable. We define the 

Accuracy_Rate(λ) as the proportion of validation samples that match in class type with 
the nearest λ-acceptable prototypes. Let Rfull be the proportion of validation samples 
that match in class type with their nearest prototype, with respect to the full-vector 
distance. The optimal value of λ is then the smallest value for which 

 

fullRRateAccuracy ≥)(_ λ .                                         (11) 
 

We now consider the number of steps to be performed, and the dimension, or the 
number of features, for each step. We use ne to denote the number of prototypes passed 
to the next step if we perform sub-vector matching with dimension e. Suppose the 
dimension for step i is di. We describe what to do for step i+1. To perform sub-vector 
matching at step i+1, we need to compute 

idne ×  operations at step i+1 and 

ened ×− )(  operations at step i+2, assuming that full-vector matching occurs in the 

second step; therefore, the computational complexity of these two steps is 
 

ed nedneeC
i

×−+×= )()( .                                      (12) 
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i
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+ =  Two options are available at step i+1. Either we perform 

sub-vector matching with dimension di+1, or we perform full-vector matching. The 
complexity of the former is )( 1+idC , while, latter’s is 

idi ndd ×− )( . If 
 

idii ndddC ×−<+ )()( 1 ,                                          (13) 
 

we adopt sub-vector matching with dimension 1+id ; otherwise, we adopt full-vector 

matching. We proceed in this fashion, until dimension d is reached at a certain step. 

5   Experiment Results 

We evaluated the three techniques by applying them to the ETL9B dataset, which 
consists of 3,036 Chinese/Hiragana character types. From this dataset, we took 100 
samples per character type for training purposes and another 100 samples per character 
type as validation data. The feature extraction method consisted of three basic tech-
niques (Chang, et al. [12-14]): non-linear normalization (Lee and Park [15] and Ya-
mada, et al. [16]), directional feature extraction ([12], [14]), and feature blurring (Liu, 
et al. [17]). 

If we had to train all one-against-one SVM classifiers for the 3,036 character types 
out of 303,600 training samples, it would have taken an estimated 32 days using a PC 
with a Pentium IV 2.4GHz CPU and 2GB RAM. In the testing phase, a fast method like 
DAGSVM [5], would have required 31.78 seconds to recognize a character and would 
have stored approximately 1.5×108 support vectors in the memory. However, if we use 
the proposed approach, we need to store only 19,237 prototypes (6.3% of the training 
samples), and 11,104,041 support vectors (approximately 7% of the support vectors, if 
all pairs are given as confusing pairs). It is noteworthy that we spent only 61.1 hours 
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training both the prototypes and SVM. The three parameters δ, k1, and k2 (cf. Section 3) 
were found to be 2, 3, and 5, respectively. 

By applying multiple trees and sub-vector methods to accelerate the matching of test 
samples and prototypes, we can recognize 1418.7 characters per second, compared to 
57.6 characters per second if a sample had to match all prototypes; thus, the accelera-
tion ratio is 24.6. From the results shown in Table 1, we observe the acceleration 
methods do not cause any loss in test accuracy. 

Table 1. The performance of multiple trees and sub-vector methods 

ETL9B (Number of Class Types = 3,036, Number of Prototypes = 19,237) 
 Testing Accuracy Computing Time(s) Computing Speed (c/s) 

Un-accelerated Match-
ing 

93.66% 5,271 57.6 

Multiple Trees + 
Sub-Vector 

93.68% 214 1418.7 

 

 
Using SVM for post-processing boosts the test accuracy rate from 93.68% to 

96.59%, but it adds 9,537 seconds to the recognition time so the recognition speed 
drops from 1418.7 to 31.1characters per second (Table 2). 

Table 2. The performance of our proposed methods applied to ETL9B 

 Testing Accuracy Computing Time (s) Computing Speed (c/s) 
Multiple Trees + 

Sub-Vector 
93.68% 214 1418.7 

Multiple Trees + 
Sub-Vector + SVM 

96.59% 9,751 31.1 

6   Conclusions 

We have proposed a combination of three methods to solve the Chinese handwriting 
recognition problem: prototype learning/matching, SVM, and fast vector matching 
using multiple trees and sub-vectors. The prototypes and trees provide the means to 
decompose the feature vector space and help reduce the number of candidates for 
matching. Sub-vector matching is obviously useful because it avoids wasting time on 
less likely candidates. By using these techniques in the pre-processing stage, we can 
exploit the effectiveness of SVM to enhance the test accuracy of the recognition task. 
The combination of the techniques is not only useful for the current application, but 
also for many other types of classification problems that involve a large number of class 
types and training samples. 
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Abstract. This paper discusses online handwriting recognition of Ja-
panese characters, a mixture of ideographic characters (Kanji) of Chi-
nese origin, and the phonetic characters made from them. Most Kanji
character patterns are composed of multiple subpatterns, called radicals,
which are shared among many (sometimes hundreds of) Kanji character
patterns. This is common in Oriental languages of Chinese origin, i.e.,
Chinese, Korean and Japanese. It is also common that each language has
thousands of characters. Given these characteristics, structured character
pattern representation (SCPR) composed of subpatterns is effective in
terms of the size reduction of a prototype dictionary (a set of prototype
patterns) and the robustness to deformation of common subpatterns.
In this paper, we show a prototype learning algorithm and HMM-based
recognition for SCPR. Then, we combine the SCPR-based online recog-
nizer with a compact offline recognizer employing quadratic discriminant
functions. Moreover, we also discuss online handwritten Japanese text
recognition and propose character orientation-free and line direction-free
handwritten text recognition and segmentation. Finally, as applications
of online handwritten Japanese text recognition, we show segmentation
of mixed objects of text, formulas, tables and line-drawings, and hand-
written text search.

1 Introduction

As PDAs, tablet PCs, and other pen-based or paper-based systems, such as the
Anoto [1] and e-pens [2], spread, the demand for improving online handwriting
recognition and liberating it from writing constraint is still increasing. In online
handwriting recognition, both temporal information of pen tip movement and
spatial shape information are available, so it can yield higher recognition accu-
racy than offline handwriting recognition. Moreover, online handwriting recog-
nition provides good interaction and adaptation capability because the writer
can respond to the recognition result to correct misrecognition and rejection.

The research of online handwriting recognition began in the 1960s and has
been receiving intensive interest since the 1980s. The comprehensive survey be-
fore the 1990s appears in [3][4]. In recent survey papers, Plamondon, et al. mainly

D.S. Doermann and S. Jaeger (Eds.): SACH 2006, LNCS 4768, pp. 170–195, 2008.
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reviewed the status of western online handwriting recognition [5] while Liu, et al.
and Jaeger, et al. reviewed online Chinese and Japanese handwriting recognition
[6][7]. In this paper, we mainly discuss online Japanese handwriting recognition,
including our recent results.

The Japanese character set consists of various characters: numerals, sym-
bols, Hiragana, Katakana, and Kanji characters of Chinese origin. Hiragana and
Katakana are phonetic characters. The former consists of 83 characters, and the
latter consists of 86 characters. Kanji characters are idiographic characters. Two
classes are defined for the purpose of computer processing: JIS first level and JIS
second level (JIS stands for Japanese Industrial Standard). The JIS 1st level set
contains 2,965 common characters, which are necessary for reading the newspa-
per, and the JIS 2nd level set contains 3,390 characters less common and special
characters for naming.

Most Kanji character patterns are composed of multiple subpatterns, called
radicals, which are shared among many (sometimes hundreds of) Kanji character
patterns. This is common in Asian languages of Chinese origin, i.e., Chinese, Ko-
rean, and Japanese. Among Kanji character patterns, some patterns are simple,
consisting of a single radical, while others are complex with multiple radicals.

In the field of pattern recognition, large volumes of sample patterns are as
important as recognition methods. We spent four years compiling two databases
of online Japanese handwritten character patterns, named “TUAT Nakagawa
Lab. HANDS-kuchibue d-97-06” (hereafter Kuchibue d) [8] and “TUAT Nak-
agawa Lab. HANDS-nakayosi t-98-09” (hereafter Nakayosi t) [9]. Kuchibue d
stores 11,962 character patterns from each of 120 people (1,435,440 patterns),
and Nakayosi t stores 10,403 patterns from 163 people each (1,695,689 patterns).
Thus, they store more than 3 million patterns in total. About 50 institutions,
including more than 10 groups from abroad, use our databases, so we will base
our experiments on these databases.

The large number of Japanese character categories affects the classification
techniques. In western handwriting recognition, Hidden Markov models (HMM)
are successfully applied. However, they are not common in Japanese handwriting
recognition because they require huge amount of training data for each charac-
ter. Therefore, DP-matching comprises the core of many online Japanese hand-
writing recognizers with several modifications proposed [10]-[12]. These large
categories also affect the size of the dictionary (a set of prototype patterns) and
the recognition speed, so it has been difficult to use a powerful online recognizer
or combine online/offline recognizer to improve the recognition accuracy in a
small computer.

The demand to remove writing constraint for online handwriting recognition is
increasing steadily as people can write more freely on enlarged surfaces of tablet
PCs, electronic whiteboards, and other paper-based handwriting environments.
However, segmentation and recognition of online handwritten Japanese text is
challenging work, because of the large variation of character size, and people
write text horizontally, vertically or even slantwise.
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In addressing these problems, we present structured character pattern rep-
resentation (SCPR)-based online handwriting recognition, which has significant
effect for the Japanese character set of the large category size, in Section 2.
Section 3 describes the combination of the SCPR-based online recognizer with
a compact offline recognizer. Section 4 presents an online handwriting Japanese
text recognition method liberated from constraints of line direction and character
orientation. Section 5 describes some applications. Section 6 draws conclusions.

2 Character Representation

In this section, we describe a Japanese Kanji character pattern representation,
which strongly relates to handwriting recognition.

In the representation for input patterns, the sequence of feature points or
line segments in time series are commonly used in online Japanese handwriting
recognition [10]-[17] The stroke order and the stroke directions of the input
pattern are kept in these sequences. Some recognition methods employ the offline
features (e.g. directional features, loops of strokes) extracted from the images of
the input patterns [18]-[20]. Employing these representations, instead of the raw
data of the input pattern (sampling points by digital pen), reduces the data size
and noise.

Early research attempted to extract subpatterns from an input character pat-
tern and recognize the input pattern as the composite of subpatterns, but did
not succeed because subpattern extraction was difficult. Instead, many systems
employ the pattern structure composed of subpatterns in a prototype represen-
tation and expand it to a sequence of feature points, or line segments, when
matched with the input pattern. Shape variations or stroke order variations
register as multiple alternatives into a subpattern, so they are shared among
character patterns that include the subpattern in their shapes. We will see this
in more detail in the following sections.

2.1 Structured Character Pattern Representation (SCPR)

Japanese Kanji characters are mostly composed of multiple subpatterns called
radicals. SCPR represents a character pattern as a composite of basic subpat-
terns (primitive, so they are not further decomposed) and structural information
of how to combine them (Figure 1) [12].

Here, we present two online handwriting recognition systems. One uses the
prototype learning algorithm (PLA) and linear-time elastic matching (LTM)
[12][13], and the other system is based on HMM [21]. We call the former system
“Sys LTM” and the latter “Sys HMM”. Both employ the SCPR dictionary in
which prototypes of basic subpatterns (BSs) are shared among character cate-
gories, as shown in Figure 2.

In the SCPR dictionary of Sys LTM, all the BS prototypes, as well as the
character pattern prototypes, are represented by a square shape with 128 x 128
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basic subpattern
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Kanji pattern
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Fig. 2. SCPR dictionary
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Fig. 3. Size reduction by linear mapping

resolution, and each of them is a sequence of feature points in a time series.
When included in prototypes of larger subpattern prototypes or character pat-
tern prototypes, their sizes reduce to bounding boxes in structural information
through linear mapping (Figure 3). We call a result of the linear mapping a
“mapped BS prototype,” even if the mapping is sometimes identical (with no
deformation). Hereafter, we refer to this as an MBS prototype.
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The SCPR dictionary of Sys HMM has similar structural information and
links to component SCPR-based HMMs in place of BS prototypes.

SCPR provides advantages to the size reduction of the dictionary (a set of
prototype patterns) and the robustness against deformation of common radicals.

2.2 Prototype Learning Algorithm (PLA)

No matter the classification method, prototypes greatly influence the perfor-
mance of classifiers. PLA better approximates discrimination boundaries be-
tween different categories in a feature space [22]-[25]. Liu, et al. have shown the
advantages of PLA in offline handwritten Kanji character recognition [26].

For online handwriting recognition systems in which prototypes are the se-
quences of feature points (e.g. Sys LTM), we have proposed a PLA to improve
the BS prototypes by moving their feature points [27]. The base learning method
of our PLA is the generalized learning vector quantization (GLVQ) [25]. GLVQ
updates the genuine prototype (the closest prototype in the correct class) and
the rival prototype (the closest one in different classes) using learning patterns.

Recognition by LTM and PLA. Our PLA uses the correspondences between
feature points that are the results of LTM in the process of recognition. In Figure
4, the dash lines show the correspondences. Although general elastic matching
methods commonly generate one-to-many or many-to-one correspondences be-
tween the feature points, our method of Sys LTM generates only one-to-one
correspondences by discarding the uncertain correspondences.

learning pattern 
“木”

genuine prototype 
“木”

rival prototype 
“戈”

Fig. 4. Correspondences between feature points

SCPR-Based PLA. To improve the prototypes in the SCPR dictionary, we
consider each prototype matched with the learning pattern as a composite of
MBS prototypes. Figure 5 shows the process of our PLA, improving the feature
point v in the BS prototype. Each u(v) is a feature point of the MBS prototype
mapped from the feature point v, and each pl is a feature point in the learning
pattern corresponding to u(v). S is the bounding box size of each MBS prototype,
and G(pl − u(v), S) is the function to normalize the displacement pl − u(v) by
the bounding box size. Every displacement between u(v) and pl is measured and
reflected in the feature point v using G(pl − u(v), S).
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We transform the formulae of GLVQ into (1) and (2) to update the feature
points of the BS prototypes.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x′
i =xi+4α(t)lk(1−lk)

G(dj , Sj)G(xl−xi, wi)
{G(di, Si)+G(dj , Sj)}2

y′
i =yi+4α(t)lk(1−lk)

G(dj , Sj)G(yl−yi, hi)
{G(di, Si)+G(dj , Sj)}2

(1)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x′
j =xj −4α(t)lk(1−lk)

G(di, Si)G(xl−xj , wj)
{G(di, Si)+G(dj , Sj)}2

y′
j =yj−4α(t)lk(1−lk)

G(di, Si)G(yl−yj, hj)
{G(di, Si)+G(dj , Sj)}2

(2)

In the above formulae, (1) and (2), u(vi) = (xui, yui) in the genuine prototype
maps from vi = (xi, yi) of one BS prototype, while u(vj) = (xuj , yuj) in the
rival prototype maps from vj = (xj , yj) of the other BS prototypes. The feature
point pl = (xl, yl) in the learning pattern corresponds to u(vi) and u(vj). The
term α(t) denotes the learning rate. The other parameters lk, μk, di, and dj are
defined as follows:

lk = lk(μk)=
1

1+e−ζμk
(3)

μk =
G(di, Si) − G(dj , Sj)
G(di, Si) + G(dj , Sj)

(4)

di = ‖pl − pi‖ (5)
dj = ‖pl − pj‖ (6)
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of learning patterns: p

l

Fig. 6. Distribution of feature points

Fig. 7. Distance between the center of gravity and feature points

We obtained the distribution of the feature points in learning patterns corre-
sponding to each feature point in MBS prototypes, as the size of the distribution
(the average distance from the center of the distribution to every l(v) in the dis-
tribution) shows to what degree each MBS point can move (Figure 6).

To describe the size of distribution, we employed the average distance from
the center of the distribution to every l(v) in the distribution (Figure 7).

We employed our database, Nakayosi t to obtain the distribution. By using
the database, we estimated the relations between the bounding box size of MBS
prototype S = (w, h) and the distribution size D for vertical and horizontal
directions as follows:

Dw(w) = 0.0846w + 1.7 (7)
Dh(h) = 0.0539h + 3.5 (8)

The normalization formulae using the relation are as follows.

Gw(x1−x2, w)=(x1−x2){Dw(128)/Dw(w)} (9)
Gh(y1 −y2, h)=(y1 −y2){Dh(128)/Dh(h)} (10)

Evaluation for SCPR-Based PLA. In the experiment, we improved the
SCPR dictionary of Sys LTM to evaluate our PLA. As the set of learning
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patterns, we employed all the character patterns of the JIS 1st level set in
Nakayosi t. We employed another database, Kuchibue d, for evaluation. In the
first step, we generated the averaged BS prototypes by learning patterns. Then,
we performed our PLA. Before learning, the recognition rate of Sys LTM with
the dictionary was approximately 84.4% for the data set of evaluation. After
learning, the rate improved to 89.1%.

SCPR-Based PLA for Offline Recognition. Now, we describe SCPR and
the learning method for offline recognition. In general, offline recognition meth-
ods, directional features with four or eight-directional quantization, are extracted
from a character pattern divided into an array of cells [20][28]. Therefore, a char-
acter (same as a prototype) is represented by a matrix of directional features.
In Figure 8, fv(i, j) is the set of directional features extracted from the cell of
the i − th row and j − th column in the character pattern.
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Fig. 8. Matrix of the directional features extracted from the character pattern

When the character C is composed from a set of subpatterns, we can show it
as follows:

C =
Ns∑

i=1

AiSi (11)

(Ns: number of subpatterns, Ai: linear mapping to make a subpattern, Si:
matrix of fv to describe a basic subpattern)

Subpatterns don’t overlap each other in Japanese characters, so

Fi = A−1
i C (12)

Linear mapping transforms the directional features in a basic subpattern.
Therefore, when a character pattern is learned and reflected to a subpattern,
the directional features again map through inverse mapping with the directions
modified. To enable mapping and inverse mapping that may change the direc-
tions of segments, the directional features must be extracted and represented
finely enough.

For offline character recognition, the dimensions of features often reduce by
the K-L transformation:

y = ψtx (13)
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In this case, the reduced set of features is difficult to decompose into subpat-
terns. However, if the reduction is small and ψ is chosen to minimize the mean
square error, the original features can be approximated by

x ≈ ψy (14)

This enables decomposition into subpatterns and reflection to their features.
Then, we can realize structural learning for common offline character recognition
methods.

2.3 SCPR-Based HMM

The HMM has an ability to model deformations of strokes and variations of
sampled feature points, and has been successfully applied to western handwrit-
ing recognition [29][30]. For western characters, each character of the alphabet is
typically modeled by one HMM and all the words are represented by a sequence
of character HMMs. We call this approach “character HMM.” However, thou-
sands of characters comprise Asian characters of Chinese origin, so the character
HMM leads to a huge amount of memory space and training data [15][32][33][35].
To address this problem, the SCPR-based HMM [31][34] has been proposed.

Recognition by SCPR-Based HMM. The SCPR-based online handwriting
recognition system (Sys HMM) consists of a feature extraction module, a SCPR
dictionary mentioned in Section 2.1, SCPR-based HMMs, and a decoder shown
in Figure 9. Note that off-stroke information (vector from the pen-up to the next
pen-down) is not necessary when we model pen-coordinate features.

In the SCPR-based HMMs, the decoder generates HMMs for each character
pattern by connecting one, or more than one, SCPR-based HMMs according to
the SCPR dictionary. It then calculates the probability that an input pattern
is produced from the HMMs by the Viterbi algorithm. By doing this, we can
handle a large number of character patterns with a small number of HMMs.

Modeling of Pen-coordinate Features by SCPR-Based HMM. Though
the pen-coordinate feature is no less important than the pen-direction feature,
it has not been employed in the SCPR-based HMMs [31][34] because it tends
to change when subpatterns are composed into each character pattern. We pro-
posed SCPR-based HMMs that model both the pen-direction and pen-coordinate
features.

The basic idea of our approach involves the linear mapping and its inverse map-
ping, presented in Section 2.1. The BS prototypes reduce to bounding boxes in
structural information through a linear mapping when they are included in larger
subpatterns or character patterns (Figure 10). Therefore, when a SCPR-based
HMM is incorporated into a character pattern by being mapped into the bounding
box, we adapt the parameters for pen-coordinate feature according to which char-
acter pattern and where incorporated. If each state of SCPR-based HMMs has a
Gaussian distribution, the mean vector of the Gaussian distribution, at a state of
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Fig. 9. Recognition by SCPR-based HMM

Character HMM: μi = (μix, μiy), is adapted by the following equations:

μ̂ix = μix × w

128
+ spx (15)

μ̂iy = μiy × h

128
+ spy (16)

where μix and μiy denote the mean vectors of the pen-coordinate feature x
and y, and (spx, spy) denotes the top-left corner and < w, h > denotes <
width, height > of the bounding box.

In contrast, we apply the inverse of the above mapping when estimating
SCPR-based HMMs. A simple idea is to enlarge the size of the bounding box
of a mapped basic subpattern in a learning pattern to the normalization size.
By applying the inverse mapping, we can exclude character dependency of each
subpattern (difference in size and position when it appears in different character
patterns) to model pen-coordinate features of the subpattern by SCPR-based
HMMs. However, as handwriting usually contains noise due to hand vibration,
etc., the inverse mapping may magnify these noises and reflect them into the sub-
pattern. To avoid noise expansion, we employ the displacement normalization
mentioned in Section 2.2, instead of inverse mapping each subpattern.

Evaluation for SCPR-Based HMMs. We use only Kanji categories in the
JIS 1st level set in Kuchibue d. Patterns from 60 writers were used for training,
and those from the remaining 60 writers were used for testing.

First, we evaluated the effect of positional features and directional features
upon the latter alone. Table 1 demonstrates the importance of both the direc-
tional and positional features. They have increased more than eight points, from
83.6 to 92.3%.
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Table 1. Effect of positional features and directional features

N-best cumulative
Features recognition rate (%)

1 -2 -3 -10
directional features 83.6 88.4 90.0 92.7

direct. f + positional f 92.3 95.1 95.9 96.9

Second, we compared the proposed SCPR-based HMMs and the conventional
character HMMs with respect to memory size. The former requires 30.68 M
bytes, and the latter needs 3.81 M bytes.

3 Classifier Combination

This section describes the combined recognizer, composed of the SCPR-based on-
line recognizer and the offline recognizer. An online handwritten pattern easily
converts to an offline pattern by discarding temporal information, so we can apply
the offline method. Although the online method is more robust against stroke cate-
nation, running strokes, and deformation of character patterns when compared to
the offline method, the offline method is free from stroke-order variation and ro-
bust to duplicated strokes when people write two or more times. Therefore, by
combining the online method with the offline method, the recognition accuracy
improves because they can compensate for their disadvantages. Several attempts
have been made to combine the two methods [36][37]. In Japanese character recog-
nition, Tanaka, et al., showed the initial attempt to combine online and offline clas-
sifiers [38] while Okamoto, et al., showed the combination in the feature level, i.e.,
added online features to offline features in an offline recognition scheme [20]. It
seems that classifier combination is more flexible than feature combination, as we
can employ the most suitable classification method for each set of features.

In this paper, we show succeeding research after [38] to improve recognition
accuracy, while increasing recognition speed and reducing memory size. The
memory requirements for the offline prototype dictionary are significantly larger
than that for the online one. Especially, the dictionary size depends on the num-
ber of categories, so the combined recognizer for Japanese characters is difficult
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for a small computer, such as a PDA. We also propose a compact combined rec-
ognizer, composed of the SCPR-based online recognizer and an offline recognizer
with a small prototype dictionary.

3.1 Combination Process

To combine the online recognition and the offline recognition, a given online
character pattern converts to a bitmap image, then online recognition and of-
fline recognition are processed in parallel. We employ Sys LTM as mentioned in
Section 2.1, as the online recognition method and Modified Quadratic Discrim-
inant Function (MQDF2) [39] as the offline recognition method.

Combination Rule. Various possibilities can combine outputs from multiple
classifiers. Kittler, et al. present many combination schemes, such product rule,
sum rule, min rule, max rule, median rule, and majority voting [40]. We employ
the sum-rule, in which the total score of a combined classifier is the addition of
all classifiers. The sum rule is denoted as follows:

AssignX → Cj if
R∑

i=1

P (Cj |fvi) =
Nccmax
k=1

R∑

i=1

P (Ck|fvi)
(17)

where Ncc denotes the number of character categories, R denotes the number
of classifiers, fv denotes a feature vector extracted from the input pattern X ,
Ck denotes the prototype and P (Ck|fvi) denotes the probability that Ck occurs
when fvi is given.

Evaluation Score Normalization. Recognition results, produced by each rec-
ognizer, are pairs of a candidate character and an evaluation score that represents
similarity or distance. However, each recognizer outputs a different type of eval-
uation score. The evaluation score of our online recognizer shows similarity. The
higher the score, the more likely the candidate is. However, our offline recognizer
employs distance. The lower the score, the higher the likelihood is. To combine
these recognizers, we apply our likelihood normalization approach [41][42].

3.2 Small Offline Prototype Dictionary

MQDF2 for the offline recognition is given as:

g2(x, ωi)

=
m∑

j=1

1
λij

[ϕT
ij(x − μi)]2

+
1
δ
{‖x − μi‖2 −

m∑

j=1

[ϕT
ij(x − μi)]2}

+
m∑

j=1

log λij + (n − m) log δ (18)
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Table 2. Recognition rates of the combined recognizer (%)

Online Offline Combined
9.7MB 91.8MB 9.7MB 91.8MB

87.2 83.2 86.9 91.4 92.2

where μ is the mean vector, ϕ is the eigen vector, λ is eigen value, and δ is a
modified eigen vector, n is the number of dimension, and m is the number of λ.

While the SCPR dictionary of our online recognizer is only 150KB, the proto-
type dictionary of the offline recognizer is about 90MB. To reduce the total size
of memory, we propose a small prototype dictionary for the offline recognizer by
reducing the parameters for MQDF2.

The size of the offline prototype dictionary: Si is calculated from the size of
each parameter {sμ, sϕ, sλ, sδ} where sx denotes the size for the parameter x as
follows.

Si = Ncc × {n × (sμ + m × sϕ) + m × sλ + sδ} (19)

In this study, we make two extreme sizes of dictionaries. One is 9.7MB whose
n is 100 and m is 10. The other is 91.8MB whose n is 256 and m is 40. Each
parameter {sμ, sϕ, sλ, sδ} requires 16 bits in both the dictionaries. The size of the
SCPR dictionary in the online recognizer is 150KB, so the dictionary size of the
combined recognizer is almost the same as in the offline recognizer. Hereafter, we
call the combined recognizer which employs the 9.7MB dictionary “Sys 9.7MB”
and the 91.8MB dictionary “Sys 91.8MB”.

3.3 Evaluation of the Combined Recognizer

We trained the online recognizer using Nakayosi t and the offline recognizer us-
ing ETL9B [43] written by 200 participants, each composed of 3,036 character
patterns; JEITA-HP [44] written by 580 participants, each composed of 3,306
character patterns; NTT-AT [45] written by 51 participants, each composed of
1,237 character patterns; and Nakayosi t. We also used Nakayosi t for normaliz-
ing evaluation scores.

The recognition rates appear in Table 2. These rates show no significant dif-
ference between the Sys 9.7MB and the Sys 91.8MB, though the correct recog-
nition accuracy of the offline recognizer with 91.8MB dictionary is higher than
the offline recognizer with Sys 9.7MB by 3.7 points.

We also compare the processing time of each recognizer on a Pentium IV 3.06
GHz processor with 512MB RAM (Table 3). The Sys 9.7MB outperforms the
Sys 91.8MB.

Table 3. Average processing time per character (ms)

Online Offline Combined
9.7MB 91.8MB 9.7MB 91.8MB

3.32 6.6 18.5 10.6 22.5
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Table 4. Recognition rates of the combined recognizer employing bi-gram model (%)

Online Offline Combined
9.7MB 91.8MB 9.7MB 91.8MB

91.2 97.0 % 97.7 98.6 98.6

Combined Recognizer with Context Postprocessing. We show the recog-
nition accuracy of our combined recognizer with context postprocessing. In this
experiment, a character bi-gram model performs as a simple stochastic language
model. Given a sequence of character patterns X = X1X2. . .Xi. . .XN , The prob-
lem is to find the character string C = C1C2. . .Ci. . .CN to maximize the prob-
ability P (C|X). Using the Bayes rule:

P (C|X) =
P (C)·P (X |C)

P (X)
(20)

The term P (X |C) shows the probability of C written as X . The term P (C)
shows the context likelihood.

Following the bi-gram model, the probability P (C) is given as:

P (C) = P (C1)
N−1∏

i=1

P (Ci+1|Ci) (21)

where N denotes the number of character patterns in a text string, and Ci

denotes each character pattern. The uni-gram probability P (C1) is assumed to
be independent from characters. In our study, the character bi-gram language
model was trained with the ASAHI newspaper text corpus “CD-HIASK’93”.

The recognition results in Table 4 show that the rate of Sys 9.7MB equals the
rate of Sys 91.8MB and raises to 98.6%.

4 Online Handwritten Japanese Text Recognition

According to the increasing size of writing surface of pen input devices, de-
mand for online handwritten text recognition is growing. Due to the difference
between Japanese and western languages and handwriting, handwritten recogni-
tion differs naturally. In this section, we describe some problems of handwritten
Japanese text recognition and approaches to tackle those problems.

4.1 Problems

Generally, on large writing surfaces Asian languages of Chinese origin are often
written horizontally, vertically, or even diagonally.

Most previous publications and systems assumed only horizontal lines of text
[46][47], while we attempted to relinquish any writing constraint from online text
input. We proposed a method to recognize mixtures of horizontal, vertical, and
slanted lines of text with assuming normal character orientation [48]. Then, we
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attempted handwriting recognition with characters rotated like in handwritings
typical of whiteboards [49].

As mentioned before, Japanese text includes various sizes of character pat-
terns ranging from so-called “half-width” characters like numbers and symbols,
Kana characters and Kanji characters of only one radical in the middle, to those
consisting of multiple radicals. Moreover, handwriting magnifies even the size
variations, as shown in Figure 11. Some characters may be several times longer
and/or wider than others.

Fig. 11. An example of Japanese handwritten text

Many Japanese characters can be divided into multiple character patterns. For
example, the patterns shown in Figure 12(a) can be read as either C1, a character
in itself, or as the two consecutive characters C2C3. The correct one is determined
by the characters (or strings) preceding and/or following it. In the example of
Figure 12(b), the character C4 follows, which causes the pattern of Figure 12(a)
to be read as C1. In Figure 12(c), the characters C5C6 follow, which causes the
pattern to be read as two characters C2C3. This example shows how the position
of character segmentation can differ even for the same handwritten pattern,
depending on the context, so it is difficult to segment characters deterministically
on the basis of geometrical features alone.

In the next section, we present an enhanced method to recognize online hand-
writing of arbitrary line directions and character orientations as well as their
mixtures.

(a) ‘好’or “女子” ？

(b) “好物”

(c) “女子大生”

C 1=好，C2=女，C3=子，C4=物，C5=大，C6=生  

Fig. 12. An example of segmentation ambiguity
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4.2 Flow of Processing

We first need to define terminology. Character orientation specifies the direction
of a character from its top to bottom, while line direction designates the writing
direction of a sequence of characters until it changes (Figure 13). A text line is
a piece of text separated by new-line or large space, and it is further divided
into text line elements at the changing points of line direction. Each text line
element has its line direction (Figure 14). The line direction and the character
orientation are independent.

Line direction

C haracter orientation

Fig. 13. Line direction and character orientation

Fig. 14. Text line element and line direction

In the following subsections, we explain the procedure of our online recogni-
tion system of handwritten Japanese text, free from character orientation, line
direction, and any writing format constraint.

Separation of Handwriting into Text Line Elements. First, we estimate
the average character size from all the strokes written on a tablet by measuring
the length of the longer side of the bounding box for each stroke, sorting the
lengths from all the strokes, and taking the average of the larger 1/3 of them.
The estimated average character size decides the threshold for separating written
text into text line elements.
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E

P2=MDP(B, P1)

P1=MDP(B,E)

B

Fig. 15. Detection of directional changing points

Next, we separate freely written text into text lines by a large off-stroke from
a previous line to a new line. Then, we separate each text line into text line
elements by the changing points of line direction.

To detect the changing points of line direction, we employ a recursive proce-
dure similar to that used to detect corner points [50]. Among a series of coordi-
nates of the centers for the bounding boxes of strokes forming a handwritten text
line, it finds the most distant point (MDP) from the straight line connecting the
starting, and ending points of the series of coordinates. If the distance is larger
than the threshold, then we apply the same procedure to the straight line from
the starting point to the MDP, and from the MDP to the ending point, with
the result of detecting multiple points of directional change, as shown in Figure
15, with B as the beginning point and E as the ending point. Thus a text line
segmented by large space is further segmented into text line elements having
different line directions.

Here, it is worth noting that points detected might be within character pat-
terns rather than between characters, as P1 and P2 in Figure 15. We will address
the problem in a later section, determining the best segmentation points while
recognizing handwritten text.

Estimation and Normalization of Character Orientation. When Japanese
characters are written, principal pen movement within real strokes remains the
same as the character orientation. This happens because Japanese characters, es-
pecially Kanji, are composed of downward and rightward strokes. Therefore, if we
take the histogram of displacement direction of pen-tip coordinates, we see two
peaks, as shown in Figure 16.

Let us assume the intensity of the histogram at the angle θ as f(θ). Then, take
the θ that makes the max value of f(θ)×f(θ + π/2) as the character orientation
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Fig. 16. Two peaks in pen movement direction

for each text line element. To make the peak detection more robust, we take
the convolution of f(θ) and a Gauss function to blur the peak, so it works for
slanting characters with rightward strokes and a slightly upward inclination.

After estimating the character orientation, the text line element can be nor-
malized by rotating it.

Hypothetical Segmentation for Each Text Line Element. We hypothet-
ically segment a text line element, after the character orientation normalization,
into character patterns using geometric features.

Hypothetical segmentation depends on character orientation and line direc-
tion. After normalizing character orientation, it depends on line direction of a
text line element, as shown in Figure 17. Note that a segmentation hypothesis
often occurs within character patterns, and it differs even for the same charac-
ter pattern depending on the line direction. The quantization can be finer, but
the 4-directional quantization (shown in Figure 17) is adequate and effective to
prevent a text line element from being segmented excessively. When the line di-
rection is classified, downward or upward (rightward or leftward), a considerable
gap projected on the vertical axis (horizontal axis) or a long off-stroke to the
quantized line direction are employed as candidates for segmentation. Strokes or
off-strokes to the opposite direction merge their crossing strokes with the result
that hypotheses on segmentation can be decreased, which is then effective to
accelerate the text recognition and increase the recognition rate.

After the quantization of line direction, we extract multi-dimensional features,
such as distance and overlap between adjacent strokes, from each off-stroke and
apply the SVM to the extracted features to produce segmentation point candi-
dates [51]. Character size may vary among text line elements, so we estimate the
character size again for every text line element. Then, we normalize the extracted
multi-dimensional features by the re-estimated character size for each text line
element. Each off-stroke is classified into segmentation point, non-segmentation
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Fig. 17. Quantization of line direction

point, and undecided point, according to the features. A segmentation point
should be between two characters, and a non-segmentation point appears within
a character pattern. An undecided point is one which cannot be judged as seg-
mented or non-segmented. A segmentation unit bounded by two adjacent seg-
mentation points is assumed to be a character pattern. An undecided point is
treated in two ways: as a segmentation point or a non-segmentation point. When
treated as a segmentation point, it extracts a segmentation unit.

Construction of Candidate Lattice. A candidate lattice is constructed for
each text line, where each arc denotes a segmentation point and each node
denotes a character recognition candidate produced by character recognition for
each segmentation unit, as shown in Figure 18.

Scores associate with each arc or node following the stochastic model of evalu-
ating the likelihood composed of character segmentation, character recognition,
character pattern structure, and context.

The Viterbi search is implemented into the candidate lattice for a handwritten
text line and the best segmentation and recognition is determined.

Segmentation of a text line into text line elements by an MDP should not
be decisive. Wrong segmentation, within a character pattern, into two text line
elements and rotation of the segmented text line elements to normalize character
orientation may damage their recognition, as shown in Figure 19. To avoid this
problem, we produce multiple alternatives of text line segmentation by choosing
the segmentation point among candidates around the MDP. The range of the
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Fig. 18. Candidate lattice

Fig. 19. Problem of segmentation by an MDP
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segmentation point’s perturbation can be confined within the average character
size before or after the MDP. According to each alternative segmentation point,
the two text line elements at both sides of the segmentation point are rotated
with character orientations normalized when necessary and recognized. Then,
the Viterbi search chooses the best segmentation point.

Model of Free Format Recognition. We made a model and recently formal-
ized it for online handwritten Japanese text recognition free from line-direction
constraint and writing format constraint, such as character writing boxes or ruled
lines [42][52]. The model evaluates the probability of character segmentation,
character recognition, character pattern structure, and context. The likelihood
of character pattern structure considers the plausible height, width, and inner
gaps within a character pattern that appears in Chinese characters composed of
multiple subpatterns.

The problem involves finding the character string C = C1C2. . .Ci. . .CN to
maximize the likelihood L(C|X) that a handwritten text line pattern X is rec-
ognized as the character string C. After several steps of approximations and
modifications, we arrive at the following formula:

L(C|X)

= log P (C1) +
N−1∑

i=1

log P (Ci+1|Ci)

+
N∑

i=1

(log P (Xi|Sti, Ci) + log P (Sti/C̄|Ci))

+
N−1∑

i=1

(log P (gapi/C̄|Ci, Ci+1)) (22)

where,

N : number of characters in C.
P (Ci+1|Ci) : probability that a character Ci+1 follows Ci

(bi-gram probability).
P (Xi|Sti, Ci) : probability that a character Ci is written in a

structure Sti and represented by the stroke
sequence Xi.

C̄ : average size of the character sequence C.
P (Sti/C̄|Ci) : probability that a character Ci is written in a

structure Sti.
P (gapi/C̄|Ci, Ci+1) : probability that an outer gap : gapi appears

between Ci and Ci+1.

In the right-hand side of the above equation, the second term considers con-
text likelihood in terms of a bi-gram, the third term relats to character recogni-
tion likelihood, the fourth and fifth terms evaluate character pattern structure
likelihood and outer gap likelihood, respectively.
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5 Application

In this section, we show two types of online handwriting applications: segmen-
tation and recognition of mixed text, formulas, tables, and line-drawings; and
handwritten text search.

5.1 Segmentation and Recognition of Mixed Objects

As the writing area of pen input devices grows, users can easily write text,
mathematical formulae and figures on the screen. It is one of the most impor-
tant benefits of pen interfaces that people can write these objects by a single
pen without switching the device, mode, or software, and without any writing
restriction such as grids or boxes. However, it requires the difficult task to sepa-
rate online handwritten patterns into Japanese text, figures, and mathematical
formulas. We approached this problem earlier [53]. Recently, we take a proba-
bilistic approach to this problem and employed stroke features, stroke crossings,
and stroke densities. Moreover, we partially applied segmentation by recogni-
tion. Although the current recognizer for formulae is only a prototype, we have
achieved about 81% correct segmentation for all the strokes in Kondate t, the
newly prepared database of mixed patterns [54]. Figure 20 shows an example of
separating mixed objects. Our new approach is generally better but less effective
in distinguishing figures from other components.

Fig. 20. Separation of handwriting into text, formula and line drawing

5.2 Online Handwritten Text Search

As various pen input devices become popular, online handwritten text will be ac-
cumulated. Without a search method, however, accumulated online handwritten
text can not be utilized effectively. Search of online handwritten text by employ-
ing a pattern matching method without character recognition was reported in
[55]. Lopresti, et al. proposed a stroke search method, “Script Search Algorithm,”
which searches a long handwritten text pattern and finds approximate patterns
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of a keyword [56]. Also, we have proposed a method for writing-box-free online
Japanese handwritten text search, based on the online Japanese handwritten
text recognition, mentioned in Section 4 [57]. It searches for a target keyword
in the candidate lattice composed of candidate segmentations and candidate
characters, as shown in Figure 18, which has been generated beforehand by the
background process of online handwriting recognition. Figure 21 shows an exam-
ple of online handwritten text search. As the performance of recognizer improves,
the performance of search upgrades.

Fig. 21. Searching a keyword from free format handwritten text

6 Conclusion

We presented online handwriting recognition of Japanese characters. Most Kanji
character patterns are composed of multiple subpatterns called radicals, and
these subpatterns are shared among many character patterns, so we have em-
ployed structured character pattern representation (SCPR). SCPR is effective
in terms of the size reduction of the prototype dictionary and the robustness to
deformation of common subpatterns. Then, we described a prototype learning al-
gorithm and HMM-based recognition for SCPR. We combined the SCPR-based
online recognizer with a compact offline recognizer. Moreover, we also presented
online handwritten Japanese text recognition free from character orientation
and line direction constraints. Finally, we showed some applications of online
handwritten Japanese text recognition.
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Abstract. The market of handwriting recognition applications is increasing rap-
idly due to continuous advancement in OCR technology. This paper summarizes 
our recent efforts on offline handwritten Chinese script recognition using a seg-
mentation-driven approach. We address two essential problems, namely isolated 
character recognition and establishment of the probabilistic segmentation model. 
To improve the isolated character recognition accuracy, we propose a heterosce-
dastic linear discriminant analysis algorithm to extract more discrimination infor-
mation from original character features, and implement a minimum classification 
error learning scheme to optimize classifier parameters. In the segmentation stage, 
information from three different sources, namely geometric layout, character rec-
ognition confidence, and semantic model are integrated into a probabilistic 
framework to give the best script interpretation. Experimental results on postal 
address and bank check recognition have demonstrated the effectiveness of our 
proposed algorithms: A more than 80% correct recognition rate is achieved on 
1,000 handwritten Chinese address items, and the recognition reliability of bank 
checks is largely improved after combining courtesy amount recognition result 
with legal amount recognition result. Some preliminary research work on Arabic 
script recognition is also shown. 

1   Introduction 

Research on handwritten script recognition has received increasing attention in recent 
years, since it meets with the demands from a wide range of commercial applications, 
such as automatic postal address reading, bank check processing, recognition of hand-
written contents in forms, etc. Different ways exist to categorize handwritten script rec-
ognition. Depending on how the handwriting is acquired and converted to digital form, 
the research field can be distinguished as online and offline script recognition. For online, 
dynamic time information captured from the writing device increases the recognition 
accuracy, while for offline scripts, such information is unavailable and the recognition 
accuracy is usually much lower. According to the language, the scripts to be recognized 
can be specified as Roman, Asian, Arabic, etc, which can operate differently in recogni-
tion strategies, according to respective characteristic.   
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In this paper, we focus our attentions on the problem of offline handwritten Chi-
nese script recognition. Compared with Roman script recognition [1][2][3][4], there 
has been relatively less research work done in this area. Most published papers con-
cern the segmentation problems [5][6][7][8][9][10], post-processing [11], or specific 
applications [12][13][14][15][16]. 

Chinese handwritten script recognition presents a challenging problem for the fol-
lowing reasons: 

1) There exists great variety in the styles of handwritten scripts.  
2) Accurate segmentation is very difficult to obtain under many situations. The 

gaps between characters are often small, and sometimes adjacent characters 
touch or overlap (Fig. 1). 

3) Misclassifications of characters often occur, especially with cursive script. 
4) The unique feature of Chinese characters poses extra difficulties: The pattern 

class number is enormous (several thousands), many Chinese characters have 
very complex structures, and there also exist many similar characters. 

(a) Segmented characters 

(b) Vertical projection analysis for (a)  

Fig. 1. Typical handwritten Chinese script that touch and overlap 

In general, script recognition approaches can divide into two categories, namely ho-
listic approaches and segmentation-driven approaches. The former approaches apply 
more often to western script processing, where words, instead of single characters, are 
treated as basic units for recognition. The size of the lexicon (legal vocabulary) that 
can be handled by holistic approaches is usually limited. When the lexicon size be-
comes too large, or no extra gaps occur between words, e.g. in the case of Chinese 
scripts, segmentation-driven approaches are more favorable. In this situation, scripts 
are first segmented into a sequence of isolated units, either characters or parts of char-
acters (radicals, graphemes), then these units are recognized separately to obtain the 
final script recognition result. Our work also adapts this segmentation-driven approach 
is also adopted in our work. 

A sequential script recognition scheme appears in Fig.2. After acquiring a script 
image, it is necessary pre-processing steps such as binarization, noise removal and 
slant correction. Then, the script image segment into characters and are recognized 
 

Pre-
processing

Segmentation Recognition
Post-

processing
 

Fig. 2. Sequential script recognition scheme 
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individually by the isolated character recognition engine. Finally, context based post-
processing is called to correct the errors that may occur in the recognition step. Appar-
ently, this sequential structure has an error accumulation problem. Incorrect segmentation 
will lead directly to recognition errors, which could not be corrected even by post-
processing. 

To overcome this deficiency, we use a global optimization scheme in our script 
recognition algorithm. As shown in Fig.3, after an over-segmentation step, a probabil-
istic segmentation framework is established, which takes into account the information 
from geometrical layout, isolated character recognition, and contextual constraints. 
Multiple paths corresponding to different segmentation and recognition results are 
evaluated, and the best one becomes the final script interpretation. In the procedure, 
two essential problems should be solved well, i.e. how to design a high performance 
isolated character recognizer, and how to describe the probabilistic segmentation 
model. 

Input
script
image

Over-
segmentation

Probabilistic 
segmentation 

model

Script
recognition

result

Geometrical
layout analysis

Isolated 
character 

recognition

Semantic 
information 

 

Fig. 3. Flowchart of our proposed Chinese script recognition algorithm 

The remainder of the paper is organized as follows: Section 2, discusses the algo-
rithms for isolated character recognition, and Section 3 deals with the over-segmentation 
procedure. In Section 4, we establish the probabilistic segmentation framework; experi-
mental results on postal address and bank check recognition follow in Section 5. In Sec-
tion 6, we present our work on Arabic script recognition. Finally, conclusions and future 
work are summarized in Section 7. 

2   Isolated Handwritten Character Recognition 

Isolated character recognition plays a fundamental and crucial role in the whole script 
recognition system. In the past decades, huge amounts of character recognition algo-
rithms, including preprocessing, feature extraction and classification, have been re-
ported [17][18]. In our recognition engine, nonlinear normalization based on  
line-density equalization [19] first applies to character images to reduce stroke defor-
mation. After that, the high resolution gradient feature is extracted [20][21], and a 
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modified quadratic discriminant function (MQDF) [22] works as the main classifier. 
To enhance the discriminative ability of the recognition engine, we proposed a novel 
heteroscedastic linear discriminant analysis (HLDA) method to extract more dis-
criminative information from the original feature vector [23], and apply a minimum 
classification error (MCE) learning scheme [21] to adjust the MQDF parameters  
estimated by the maximum likelihood method. 

2.1   Heteroscedastic Linear Discriminant Analysis 

Dimensionality reduction, or specific feature extraction, is crucial in pattern recognition. 
It is necessary not only to reduce computational cost, but also to solve the “curse of 
dimensionality,” when the number of training samples is small relative to the feature 
dimensionality. From the viewpoint of classification, feature extraction should preserve 
as much class-separability as possible in the lower dimensional space. Of all the super-
vised feature extraction techniques, linear discriminant analysis (LDA) is probably the 
most frequently used, which aims at maximizing the between-class scatter SB while 
minimizing the within-class scatter SW. Although LDA is efficient and simple to imple-
ment, it has its own deficiencies. LDA implicitly assumes that all the pattern classes are 
Gaussian distributed and have equal covariance, so it extracts discriminative informa-
tion only from the difference of class mean, while ignoring the discriminative informa-
tion in the difference of class covariance. Therefore, when the practical feature data is 
heteroscedastic, LDA cannot perform optimally. Following Loog’s original work 
[24][25], we have proposed a new HLDA algorithm to generalize LDA to heteroscedas-
tic feature data [23].  

For simplicity, we assume the within-class matrix equals to the identity matrix, i.e. 
SW=I. The between-class scatter matrix SB can decompose as 

1

1 1

,
C C

B i j Eij
i j i

p p
−

= = +

=∑ ∑S S  (1) 

in which 

( )( ) ,T
Eij i j i j= − −S m m m m  (2) 

C is the pattern class number, pi and mi are the prior probability and mean vector of class 
i, respectively. SEij is called the Directed Distance Matrix (DDM), associated with class i 
and j, which as it not only gives the distance between two classes by its eigenvalues but 
also implies the directions in which the distance could be found by its eigenvectors. Un-
der the homoscedastic Gaussian assumption of LDA, the corresponding SEij has only one 
non-zero eigenvalue, which equals the Euclidean distance 

( ) ( )T
Eij i j i jd  .= − −m m m m  (3) 

SEij and dEij is related by tr(SEij)=dEij. 
The LDA feature transformation matrix Φ is achieved by maximizing a Fisher cri-

terion, which can be represented by coupling the pairwise-class separability criterion, 
1

1 1

1 1

(Φ) [(Φ Φ) (Φ Φ)] [(Φ Φ) (Φ Φ)] .
C C

T T T T
F W B Eij

i j i

tr tr
−

− −

= = +

= =∑ ∑J S S S  (4) 
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Under the homoscedastic assumption, Euclidean distance is sufficient to measure 
the dissimilarity between two Gaussian distributions. If we went further to consider 
the heteroscedastic situation, Chernoff distance should replace Euclidean distance: 

1
1

1
( ) ( ) log ,

(1 )
ij

Cij i j ij i j αα
i j

d
α α

−
−= − − +

−

Σ
Σ

Σ Σ
m m m m  (5) 

where Σi and Σj are the covariance matrices of class i and j, α is a constant determined 
by α= pi/(pi+ pj), and Σij= piΣi+ pjΣj. The DDM corresponding to Chernoff distance 
can be derived as 

( )1/ 2 1/ 2 1
( )( ) log log (1 ) log ,

(1 )
T

Cij ij i j i j ij ij i jα α
α α

− −= − − + − − −
−

Σ Σ Σ Σ ΣS m m m m  (6) 

since tr(SCij)=dCij. Replace SEij with SCij in (4), we get the Chernoff criterion 

1
1
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p p tr
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Given our overly large number of pattern classes, e.g. in handwritten Chinese char-
acter recognition, the pairwise-class calculation scheme can be computationally too 
expensive. Also, the logarithm items in (6) appear computationally unstable. There-
fore, we may discard the logarithm item and use the global mean vector m0 to avoid 
pairwise-class calculation, thus (7) simplifies as 

1
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where 
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and 
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In (8), SMi corresponds to Mahalanobis distance 1
0 0 0( ) ( )T

Mi i i id −= − −m m m mΣ , as 

tr(SMi)=dMi. JM(Φ) is the new Mahalanobis criterion that we propose, and the hetero-
scedastic LDA algorithm based on this criterion is called M-HLDA. 

The above discussion works under the assumption that SW=I. If not, we can always 
perform a whitening transformation y=SW

-1/2x in the original feature space. After get-
ting the optimal transformation Φ in the whitened feature space with the Mahalanobis 
criterion, we can transform back to the original feature space with an inverse trans-
formation x=SW

1/2y. The Mahalanobis criterion in the original feature space can be 
represented as 

1/ 2 1/ 2 1 1/ 2 1/ 2

1
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=
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where Mi
′S  is the DDM matrix in the whitened feature space. The M-HLDA solution 

finally devolves to finding the eigenvectors corresponding to the largest d eigenvalues 

of matrix 1 1/ 2 1/ 2

1

( ).
C

i W W Mi W
i

p −

=

′×∑ S S S S   In this way, we retain the simplicity of LDA 

solution, and only a generalized eigenvalue problem needs to be solved when calcu-
lating the optimal M-HLDA feature transformation matrix. 

We have applied the proposed M-HLDA feature extraction algorithm to the 
HCL2000 handwritten Chinese character database [20], achieving a 10% drop in the 
misclassification rate over conventional LDA. 

2.2   Discriminative Training on Parameters of Modified Quadratic Discriminant 
Function 

In the compressed d-dimensional feature space, the MQDF distance for an unknown 
pattern x can be derived under the Gaussian distribution assumption: 

( )
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And, the decision rule is 

( ) arg min ( ).i
i

C h=x x  (13) 

In (12), μi and Σi denote the mean and covariance of class i, λij and φij denote the j-th 
eigenvalue (in descending order) and the corresponding eigenvector of Σi, k(k<d) is 
the number of dominant principal axes, and σ2 is a constant to compensate for the 
estimation error on small eigenvalues caused by the lack of training samples. 

The parameters of MQDF classifier are estimated by the maximum likelihood 
(ML) method. ML estimation aims at fitting the assumed probabilistic model, but it is 
not necessarily optimum in terms of classification accuracy. Therefore, we use a 
minimum classification error (MCE) training scheme to adjust the MQDF parameters, 
which is originally proposed by Katagiri and Juang [26][27], and later introduced in 
the character recognition field to couple with different classifier forms [28][29][30]. 

To apply MCE training, we first reform the representation of MQDF distance as 

( ) ( )2
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where H is a discrimination irrelevant constant to ensure h(x)>0. Meanwhile, some 
necessary parameter transformations are implemented as 

(log ) / 2
, .

log
ijτij T

ij ij ij i

λ j k
τ m e

σ j k
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= =⎨ >⎩
φ μ  (15) 

MQDF parameters can be denoted as { } { , , } 1,2... , 1, 2...i ij ij ijm i C j dτ= = = =Θ θ φ . 
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Assume that xn is a training pattern from class m, the misclassification measure on 
xn is defined by 

( ) ( ) ( ), , , , .n m n m m nd h h η= −x Θ x θ x Θ  (16) 

The latter term on the right side of (16) collectively represents the MQDF distances 
of all the rival classes 
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Embedding d(xn,Θ) into a sigmoid function, we get a continuous loss function 
s(xn,Θ) with respect to Θ, 

( ) ( ),

1
, ( 0).

1 n
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s
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+ x Θx Θ  (18) 

When η and γ approach infinity, s(xn,Θ) becomes the simple 0-1 loss. The empiri-
cal loss on the entire training set X={x1, x2, … xN} summarizes of the individual loss, 
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S(X,Θ) then minimizes using a generalized probability descent (GPD) algo-
rithm[23]. The ML estimation is taken as the initial Θ, and gradually improved esti-
mation can be obtained by an iterative scheme 
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According to derivation rules, 

( , ) ( , ) ( , ) ( , )
,

( , ) ( , )
n n n i n i

i n i n i i

s s d h

d h

∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂
x Θ x Θ x Θ x θ
θ x Θ x θ θ

 (21) 

the three terms on right side of (21) are calculated as (22), (23), (24), respectively. 
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Theoretically the eigenvectors φij can also be optimized by the GPD algorithm, but it 
will take extra effort to retain the orthogonal and normal constraints. Therefore, only mij 
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and τij are updated in our training procedure, and φij is left unchanged. The learning rate εt 

in (20) is set as εt = ε0(1- t/N), the initial learning rate ε0, as well as the parameters η and γ 
in the classification loss function are all determined experimentally. 

By using MCE training and other discrimination schemes, we have achieved excel-
lent performance on Chinese character recognition [18]. On the ETL9B database, a 
99.33% correct rate is achieved on the test set, while on the HCL2000 database a 
99.56% correct rate is achieved on the test set. 

3   Over-Segmentation 

Given the extreme difficulty segmenting scripts into isolated characters without any 
prior knowledge, we adopt an over-segmentation and merging strategy in our script 
recognition algorithm.  

The goal of over-segmentation aims to cut a script image into a radical sequence. 
Each extracted radical belongs to only one character, thus correct segmentation can be 
realized by selecting a proper merge path of radicals. Ordinary segmentation algo-
rithms, such as projection histogram analysis and connected component analysis can-
not work well when adjacent characters touch. Therefore, we attempt to extract the 
elemental units in the Chinese characters, i.e., strokes. Black pixel run-length analysis 
is implemented on the script image, run-lengths that are close and approximately in 
the same direction are tracked to form a stroke. Details of the stroke extraction algo-
rithm can be found in [31][32]. 

Each stroke is contained within a rectangle called a bounding box. According to the 
extent of overlap between adjacent bounding boxes, we can iteratively merge strokes 
into radicals. The whole over-segmentation procedure is demonstrated in Fig. 4. 

(a) Script image

(b) Stroke extraction result

(c) Strokes merging into radicals
 

Fig. 4. Over-segmentation procedure 

4   Probabilistic Framework for Segmentation Model 

After the radical sequence is extracted from the script image, each possible radical 
merging path then corresponds to a segmentation result, and produces a specific char-
acter image sequence. The segmentation then converts to an optimal merging path 
selection problem. Obviously, the geometrical layout has an important impact on 
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deciding which path should be selected. The isolated character recognition as well as 
semantic information also influences the segmentation results. Therefore in our work, 
all these information are integrated in a probabilistic model. 

Let E denote a radical sequence (e1, e2,…,eN) given by over-segmentation, S de-
note a path that merges (e1, e2,…,eN) into a character image sequence (I1, I2,…,IM) 
(M≤N), and O denotes an interpretation to recognize (I1, I2,…,IM) as (c1, c2,…,cM). 

1 2

1 2

1 2

( , ,..., ),

( , ,..., ),

( , ,..., ).

N

M

M

e e e

I I I

c c c

=
=
=

E

S

O

 (25) 

After over-segmentation, we must find the optimal segmentation and interpretation 
(S*,O*), given the radical serial E, according to the maximum a posterior (MAP) crite-
rion. 

* *

,
( , ) arg max { , | }.P=

S O
S O S O E  (26) 

Following the Bayesian formula, 

{ , | } { | } { | , } { | } { | }.P P P P P= =S Ο E S E O E S S E O S  (27) 

In the above equation, the item P(S|E) appears as a geometrical layout confidence, 
and the item P(O|S) appears as a string recognition confidence. We discuss the de-
tailed representation of these two confidences, respectively. 

4.1   Geometrical Layout Confidence 

The geometrical layout confidence measures the probability of a certain combination 
of radical series purely using geometrical shape analysis. This confidence does not 
associate to the character recognition results and semantic information.  

In our algorithm, the following three kinds of geometrical feature are evaluated 
(Fig. 5): 

1) Distances between the centers of adjacent character images, which are de-
noted by di, i=1,2,…M-1, 

2) Widths of each character image, which are denoted by wi, i=1,2,…,M, and 
3) Ratios of the height and width of each character image, denoted as ri=hi/wi, 

i=1,2,…,M. 

Other geometrical features can also be considered [12], but we use only the above 
three features. Treating these features as random variables and assume they are inde-
pendently Gaussian distributed, we can estimate the mean and covariance of each 
feature by the maximum likelihood method on a training set. Given that writing styles 
of scripts vary significantly, the estimated parameters usually are not stable even with 
certain normalizations. So we directly compute the mean and variance inside each 
particular script image, adapting to the writing style, to a certain extent. 
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Ii

Ii+1

di

hi
hi+1

wi

wi+1

 

Fig. 5. Geometrical features extracted from the character image sequence 

The joint probabilities of distance, width, and ratio variables are calculated respec-
tively as 
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Thus, the geometrical layout confidence of the radical merging path S could be de-
fined as, 

1 1 1 2 1 1 2 1 2( | ) ( ,... | ,... ) ( , ,... ) ( , ,... ) ( , ,... ).M N M M MP P I I e e P d d d P w w w P r r r−= ∝S E  (31) 

4.2   Character String Recognition Confidence 

Having decided the segmentation path S radicals can merge into character images 
accordingly, and recognized by the isolated character classifier. For each input char-
acter image, the classifier outputs K candidates, together with the corresponding dis-
tances in increasing order. Misclassification often happens, so the first candidate is 
not assured to be correct. The next step involves selecting a best character string in-
terpretation from the candidate sets.  

In the unconstrained or open vocabulary situation, the N-gram model is often used, 
which has been introduced to natural language processing for a long time and widely 
used in speech recognition and OCR post-processing [11]. 

According to Bayesian rule, 

1 2 1 2 1 2
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If we consider only the transition probability between two adjacent characters, the 
N-gram model becomes Bi-gram, thus we have 

1
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=
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The recognition results for different character images are independent, so we can 
derive 
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P(ci) is a prior probability, which can be assumed equal for each class, P(Ii) can 
also be treated as a constant under a fixed segmentation path. 

P(ci|Ii) is the confidence for recognizing image Ii as ci, which can be calculated by 
the output distances of the isolated character recognizer [33] as follows, 
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where dk is the character recognition distance of the kth candidate, and k(ci) denotes 
the candidate position of ci in the classifier outputs. θ is an estimated variance. 

4.3   Optimization Method 

Taking a logarithm operation on (25), 

{ }* *

, ,
( , ) arg max log { , | } arg max log { | } log { | } .P P P= = +

S O S O
S O S O E S E O S  (36) 

Optimizing the objective function directly could be computationally too expensive, 
so we exploit a three-step approximate optimization scheme.  

1) In the first step, only the first part of the objective function, i.e., the geometrical 
layout confidence logP(S|E), is maximized. Using a dynamic programming algorithm, 
we can get L candidate segmentation paths S1, S2…SL (L=100~200), which have the 
largest L layout confidences logP(Sl|E), l=1,2,…L. Other segmentation paths are 
considered unlikely and eliminated. 

2) In the second step, the recognition confidence logP(O|S) is maximized, given a 
fixed segmentation path Sl. 

* arg max log ( | ), 1,2... .l lP l L= =
O

O O S  (37) 

A HMM model formulizes this procedure. Character images I1, I2,….IM correspond to 
the observations in the HMM model, while the inherent classes c1, c2 ,…,cM correspond to 
the states in the HMM model. The initial probabilistic distribution of states π={πi},1≤i≤C, 
and the transition probabilities between adjacent states A1={a1

ij}, 1≤i,j≤C, can both be 
estimated from the training data. The conditional probability matrix B={P(I|c)}, which 
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represents the occurrence of observation image I given state c can be calculated from the 
isolated character recognizer’s outputs.  

Neglecting the subscript l in (37), the optimal class interpretation (c1
*,c2

*,…,cM
*), 

given a character image sequence (I1,I2,…IM), can be found by a Viterbi searching 
algorithm. 
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3) Finally, the optimal segmentation path, as well as the class interpretation 
(S*,O*), is obtained by, 

{ }* * *

1
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l L

P P
≤ ≤

= +S O S E O S  (39) 

5   Applications 

The handwritten Chinese script recognition algorithm discussed above has a wide 
range of applications. We investigate two typical applications, postal address reading 
and legal amount recognition on bank check. 

5.1   Postal Address Reading 

Automatic mail sorting machines have been used in China for years. However, these 
machines are only recognizes postcodes on the envelope, and postcodes cannot pro-
vide detailed address information, and sometimes they are incorrectly written by the 
mail senders or even missing. Therefore, to provide a higher grade of postal automa-
tion and better delivery service, the Chinese address scripts on the envelope should 
also be recognized.  

We extracted address scripts on 946 real envelopes from a Beijing postal office and 
tested the recognition algorithm on them. The Bi-gram model is trained using a lexi-
con (reference database) containing over 100,000 Beijing address items. As shown in 
Table 1, the total address recognition accuracy on character level is 87.2%, with er-
rors originating in two sources, isolated character recognition error (3.1%) and 
 

Table 1. Postal address recognition performance 

Address item sample number 946 

Total character number 12,891 

Segmentation error rate 9.7% 

Isolated character recognition error rate 3.1% 

Address recognition rate (character level) 87.2% 

Address recognition rate (lexicon matching) >80% 
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segmentation error (9.7%). For address interpretation, script recognition is not the last 
step, the lexicon is employed again to match with the recognition result, which can 
further reduce errors. In our experiment, the matching accuracies of various types of 
address are all more than 80% [35]. Further research aiming at better utilizing the 
lexicon in segmentation and recognition procedure continues [40].  

Fig. 6 illustrates the selection of segmentation path, as well as the character recog-
nition candidates. The result represented by Fig. 6-a corresponds to a higher probabil-
ity than all other alternatives, for example, the one represented by Fig. 6-b. Therefore, 
it is accepted as the final address segmentation and interpretation result. 

(a) (b)  

Fig. 6. Example of two different segmentation path and candidate selection results. (a) path1 
(b) path2 

(a) Input handwritten Chinese address string

(b) Radical series extracted by over-segmentation

(c) Segmentation result

(d) Recognition result

北京市宣武区枣林前街D号

 

Fig. 7. Some errors in address recognition 

Some incorrect segmentation and recognition postal address samples appear in 
Fig.7. The numerals in address scripts often can cause trouble in segmentation, since 
their geometrical features are quite inconsistent with the surrounding Chinese charac-
ters. This problem will be further investigated. 
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5.2   Legal Amount Reading on Bank Check 

On a bank check image, usually two kinds of amount exist: courtesy and legal  
(Fig. 8). A good check reading system should be able to use their redundancy. We 
aim to recognize legal amounts using the proposed script recognition algorithm and 
cross-validate the results with the recognition results of courtesy amounts, thus effi-
ciently reducing the check recognition errors. 

(b) Legal amount(a) Courtesy amount
 

Fig. 8. Example of courtesy amount and legal amount on Chinese bank check 

Compared with postal address reading, in check reading we need to operate with a 
much smaller lexicon, which is favorable for recognition. The Chinese characters appear-
ing in legal amounts can be categorized into three types: numerals (e.g. ‘壹’), units (e.g. ‘
万’) and termination tags (‘正’ or ‘整’). The transition between these characters should 
satisfy certain constraints: the amount must start with a numerical character and end with 
a termination tag, unit characters in one amount item must appear in descending order, 
etc. The major transition rules between characters in legal amounts can be illustrated by 
Fig. 9. These constraints can actually help in learning the Bi-gram model, since we can-
not acquire a large amount of check samples for training use. 

Numerals Units Termination tags
 

Fig. 9. Transition rules for characters in legal amount 

Fig.10 illustrates an example of the candidate selection procedure by an HMM 
model. The correct legal amount should be ‘壹万陆仟元正’, given the first candidate 
sequence output by the isolated character recognizer is ‘壹万陆伍元正’，the recogni-
tion error is corrected after using the semantic information. 
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Fig. 10. Candidates selection by an HMM model in legal amount recognition 

If the probability of the final selected path appears lower than a pre-defined thresh-
old, we consider the result unreliable and reject it. Usually rejection happens when the 
scanning quality of check image is too low or when the handwriting is too cursive 
(Fig. 11). 

 

Fig. 11. Examples of rejected legal amount 

We collected 2,053 real bank check image samples for our recognition experi-
ments, all of which contain both courtesy and legal amounts. One thousand images 
are training samples, used for the isolated character recognizer, establishing the se-
mantic model. The other 1,053 sample are used for testing.  

Three check amount recognition algorithms are compared, namely a courtesy 
amount recognition (CAR) method, a legal amount recognition (LAR) method pro-
posed in this paper, and a fusion algorithm utilizing both CAR and LAR results. The 
performance of the three algorithms is listed in Table 2. It can be observed that, after 
combing extra legal amount recognition result in CAR, substantially lower rejection 
and higher recognition rates are achieved with an approximately equal error rate, so 
the whole recognition reliability of check amounts is largely improved. 

Table 2. Check recognition performance comparison of different algorithms 

Algorithm Recognition Rate Rejection Rate Error Rate 

CAR 45.59% 54.13% 0.28% 

LAR 29.06% 70.75% 0.19% 

Fusion 66.10% 33.62% 0.28% 
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6   Arabic Script Recognition 

Given the increasing interaction between the western and Arabic cultures, research on 
Arabic OCR has received increasingly more attention in recent years. Arabic script 
has its unique characteristics, and is hard to directly implement the same recognition 
scheme directly as in Chinese script recognition. Several most prominent features closely 
relevant to Arabic script recognition are listed, as follows: 

1) Arabic alphabets have 28 basic characters, most of which have four different 
forms depending on their positions in a word. 

2) Arabic script is very cursive. Characters in a word usually connect along a base-
line, which brings crucial challenges to designing the segmentation algorithm 
(Fig. 12) 

3) Many Arabic characters have sub (secondary) parts, positioned either above or 
below the main parts of characters (Fig. 12). The relative positions between 
them vary greatly. These ‘parts’ are named graphemes in Arabic script. 

 

Fig. 12. Typical Arabic script samples 

Considering these characteristics, in the recognition procedure of isolated Arabic 
character, we actually attempt to recognize graphemes instead of the integer charac-
ters. The main part of basic Arabic characters consists of 16 forms: , , , , , 

, , , , , , , , , , ; the upper subparts consist of four forms: 
(1-dot) , (2-dot), (3-dot) and (hazma); and the lower subparts have two forms: 
and . If the class label of an Arabic character image I is c, and the main part Ic, 

upper subpart Iu and lower subpart Id can be labeled by cc, cu, and cd, respectively, thus 
I=(Ic, Iu, Id), c=(cc, cu, cd). Notice, in many cases, the subparts can be a null image, i.e. 
cu =∅ or cd =∅. 

For the correct segmentation, we must find the corresponding associations between 
the sub and main parts. Most past work just attribute the subparts to their nearest main 
parts [36][37], assuming the correct cutting columns on main parts can also cut sub-
parts correctly.  However, this simple strategy may fail when dealing with the script, 
as shown in Fig. 13. To solve this problem, we proposed a novel 3-queue segmenta-
tion model in [38], which considers all the possible combination of subparts and main 
parts when generating the segmentation path. 
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Correct segmentation
 

Fig. 13. An Arabic script example that subparts cannot associate with its nearest main part 

As illustrated in Fig.14, we find the main connected component in the script  
image (Fig. 14-a), was which the baseline can be extracted by the Hough transform 
(Fig. 14-b). Then a contour analysis operates on the Arab script, and a series of candi-
date cutting points found if they satisfy one of the following descriptions: 

1) Local bottom points on top contour (Fig. 14-c), 
2) Points on top (bottom) contour that have a distance to the contour on the other 

side smaller than a preset threshold (e.g. average stroke width) (Fig. 14-d), 
3) Intersection points of top contour and baseline (Fig. 14-e). 

(a) Main part of script (b) Baseline detection

(c) Type 1 cutting point (d) Type 2 cutting point (e) Type 3 cutting point  

Fig. 14. Candidate cutting point detection on Arabic script 

Two adjacent candidate cutting points should have at least a certain distance be-
tween them; therefore, some redundant candidate cutting points can be filtered. 

According to these candidate cutting points, the main part of Arabic script is over-
segmented into a sequence of graphemes, as illustrated in Fig. 15-b. If we further 
consider the sequence of the upper parts and lower parts, the whole script can be rep-
resented by a 3-queue grapheme sequence (Fig. 15-c). Denote the sequences of main 
parts, upper and lower subparts as (e1,e2,…,eNc), (e1

u, e2
u,…eNu

u) and (e1
d, e2

d,…,eNd
d), 

respectively, all in the left-to-right order. Nc, Nu and Nd are the numbers of graphemes 
in these three queues. 
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Assume the 3-queue grapheme sequence should merge into a M character image 
sequence (I1,I2,…IM) (Fig. 15-c), the corresponding segmentation path can be visual-
ized in a 3-D space (Fig. 15-e). X={x0, x1,…xM} is a sequence of 3-dimensonal inte-
ger vectors, which indicates the cutting position. The start position x0={0,0,0} and the 
end position xM={Nc, Nu

 ,Nd}.  
The recognition of geometrical layout confidence for Arabic script closely initiates 

the cases of Chinese script in Section 4.1. However, the semantic information is not 
used in the probabilistic segmentation model for Arabic script because of the lack of 
training samples. 

 

Fig. 15. Example of the cutting mechanism of the 3-queue segmentation model. (a)Arabic 
script (b) Over-segmentation result (c) 3-queue grapheme sequence (d) Characters merged by 
the graphemes (e) Segmentation path displayed in a 3-D space. 

Given a character image sequence (I1,I2,…IM), the optimal class interpretation 
(c1

*,c2
*,…,cM

*) can be obtained by 

1 2 1 2

1..

* * *
1 2 1 2 1 2

, ,... , ,... 1

( , , ) 1

( , ,... ) arg max ( , ,... | , ,... ) arg max ( | )

arg max ( | , , ) ( | ) ( | ) ( | ).

M M

c u d
i i i i M

M

M M M i i
c c c c c c i

M
c u d c c u u d d

i i i i i i i i i i
c c c i

c c c P c c c I I I P c I

I c c c c P c I P c I P c I
=

=

=

= =

=

∏

∏
 (40) 

In (40), items P(ci
c|Ii

c), P(ci
u|Ii

u) and P(ci
d|Ii

d) can be calculated from the distance 
outputs of the isolated grapheme recognizer, given the item I(ci|ci

c,ci
u,ci

d ) is a   vari-
able with value {0 or 1} reflecting logical constraint. If graphemes ci

c, ci
u, ci

d can be 
combined into a legal Arabic character ci, we set I(ci|ci

c,ci
u,ci

d)=1, otherwise 
I(ci|ci

c,ci
u,ci

d )=0. Given 16, 5 and 3 kinds of grapheme for main part, upper part and 
lower part, respectively, the number of possible combination cases is 16×5×3=240. 
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However, only 28 valid Arabic Alphabet exist, this indicates that logical constraint 
plays an important role in selecting the optimal segmentation path.  

The Arabic script recognition algorithm is evaluated on a handwritten Arabic text 
database containing 20,000 characters. Half the samples are segmented and labeled 
manually to train the isolated grapheme recognizer, and the other half remains for 
testing. These testing samples are divided into five subsets S1, S2,…, S5, according to 
different writing styles, as illustrated in Fig.16, each subset contains approximately 
2,000 characters. We compare the recognition performance of our recognition algo-
rithm with another method presented in [39], which uses the same testing data, but 
simply associates the subparts with the nearest main parts in segmentation. The com-
parison result is shown in Table 3, the average recognition rate on the test sets using 
our algorithm is 59.2%, while in [39] attains only a 41.3% recognition rate. This  
result indicates the virtue of the proposed 3-queue segmentation model. 

S1

S2

S5

S4

S3

 

Fig. 16. Arabic script samples of different writing styles 

Table 3. Performance comparison on Arabic script recognition accuracy (%) 

 S1 S2 S3 S4 S5 Average 

Proposed 
method 

69.0 59.4 57.7 54.9 54.9 59.2 

Method in [39] 43.1 44.1 46.5 34.6 38.2 41.3 

7   Conclusions and Future Work 

In this paper, we present a segmentation-driven offline handwritten script recognition 
framework. Feature extraction algorithm based on heteroscedastic linear discriminant 
analysis is proposed, and the classifier optimization method by minimum classification 
error learning is applied to improve isolated character recognition accuracy. To obtain the 
optimal segmentation and interpretation of script, a probabilistic framework is estab-
lished to integrate information from three sources: geometrical layout, character recogni-
tion confidence, and semantic model. Experimental results on multiple applications, 
including Chinese postal address reading, bank check recognition, and Arabic text read-
ing, have demonstrated the effectiveness of our algorithms.  
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Much work still remains to be done to further improve handwritten script recogni-
tion accuracy. The efficient utilization of the domain knowledge in specific applica-
tions presents one important concern. Arabic script recognition accuracy remains low 
and needs major improvements for practical use. Given the lack of Arabic training 
samples, we have not been able to use semantic information in our Arabic script rec-
ognition algorithm, which should be further investigated in the future. 
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Abstract. Two methods, Symbolic Indirect Correlation (SIC) and Style
Constrained Classification (SCC), are proposed for recognizing handwrit-
ten Arabic and Chinese words and phrases. SIC reassembles variable-
length segments of an unknown query that match similar segments of
labeled reference words. Recognition is based on the correspondence be-
tween the order of the feature vectors and of the lexical transcript in
both the query and the references. SIC implicitly incorporates language
context in the form of letter n-grams. SCC is based on the notion that
the style (distortion or noise) of a character is a good predictor of the
distortions arising in other characters, even of a different class, from the
same source. It is adaptive in the sense that, with a long-enough field,
its accuracy converges to that of a style-specific classifier trained on the
writer of the unknown query. Neither SIC nor SCC requires the query
words to appear among the references.

1 Introduction

From the perspective of character recognition, Arabic and Chinese are situated
at the opposite ends of the spectrum. The former has a small alphabet with word-
position dependent allographs, is quasi-cursive, and has diacritics, ascenders, and
descenders. The latter has an indefinitely large number of classes (of which only
the first ∼20, 000 have been coded), essentially word-level symbols (many with
a radical-based substructure), and fixed-pitch block characters. Arabic strokes
can be approximated by arcs of circles, while most Chinese strokes are straight,
with a ∼ 1 : 7 range in width (like brush strokes), and a flourish at the end.
Unlike Arabic, Chinese does not have deliberate loops.

They also exhibit some commonalities. Both have been incorporated in the
scripts used by other languages: Arabic in Urdu and Persian, Han in Japanese
and Hangul, among many others. Both have traditional roots and forms dating
back several thousand years, preserved in a large body of classical manuscripts,
and have undergone considerable and diverse modifications in each host language
and region of the world. Nevertheless, both scripts have preserved sufficient
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uniformity to link cultures that can no longer understand each other’s speech.
Their classical forms are prized and cultivated in calligraphy, which combines
visual and language arts. Neither script has upper and lower case.

Industrial-strength Arabic and Chinese OCR products must also be able to
recognize Latin characters, “Arabic” (Indian) numerals, and Western punctua-
tion. This introduces additional complexity, more because of the need to handle
diverse, intermingled reading orders and output codes than because of the in-
creased number of classes.

Many thousands of papers (the very first of which, coincidentally, is [1]) have
been written on Chinese character recognition. By the time of our first survey
[2] much of the research was appearing in Chinese and Japanese publications. In
our second survey [3], we found little new research in the West. Recent research
collaboration with Professor C-L Liu at the Pattern Recognition Laboratory
of the Chinese Academy of Science (CASIA), visits with Professor X. Ding at
Tsinghua University, and a tour of Hanwang High Technology in Beijing ac-
quainted us with the largest concentrations of character research activity in the
world and some of China’s thriving OCR industry.

Research on Arabic character recognition (actually Farsi) began in the late
sixties. Scattered projects, mainly by speakers of Arabic in the West, increased
until the turn of the millennium, when research began to grow exponentially.
Nearly one thousand reports have already been published, mostly in English
and French. Nevertheless, work on Arabic OCR lags far behind Chinese OCR
because of the lack of monolithic government and market support, and of large,
publicly available databases. For a recent survey of the state-of-the-art in offline
Arabic handwriting recognition, please see [4].

Extrapolating successful methods from Western (including Russian) OCR is
insufficient for either Arabic or Chinese because, ideally, every glyph of an entire
document must be considered simultaneously before a label is assigned to any
one of them. In practice, this notion translates to field classification, where glyphs
that are difficult to recognize in isolation (or that cannot be isolated/segmented)
are recognized in conjunction with several others.

Given the wide range of different problems exhibited by the two scripts, tack-
ling both simultaneously is a strategy for research that can bring benefits not
only to character recognition on other scripts (such as those derived from San-
skrit), but also to the wider field of pattern recognition. It will foster the de-
velopment of large vocabulary classifiers that span complex character shapes
(Chinese) and complex word shapes (Arabic). Below, we outline how we propose
to apply field classifiers, which have already proven successful on easier tasks, to
Arabic and Chinese documents.

We elaborate on two orthogonal ideas: Symbolic Indirect Correlation (SIC)
and Style Constrained Classification (SCC). The former recognizes unknown
sequences of features (possibly spanning several characters) by finding and re-
assembling its constituent subsequences in the feature sequence representation
of labeled reference text. The unknown word(s) need not be represented in the
reference set, only their lexical constituents (i.e., symbol polygrams). Style-based



220 D. Lopresti et al.

classification, on the other hand, has been applied to distorted-but-segmented
patterns. It maximizes the posterior probability of the field feature vector of
same-source words or phrases given the transcript, under the constraint of source
or style specific statistical dependence between all the features of the field.

As is customary in many-class problems, a hierarchical approach can be used
to reduce the number of candidate classes to which it is necessary to apply the
full power of more advanced methods. We believe that top-50 classification with
less than 1% error on a lexicon of several thousand Arabic words or Chinese char-
acters is within the state of the art, and that field classification can differentiate
similar candidates in this reduced list.

We are not aware of any adequate handwritten test data with full context in
either Arabic or Chinese. A proposal for the essential characteristics of such a
database was presented at SDIUT05 [5].

2 Arabic Character Recognition

Symbolic Indirect Correlation (SIC) is a general approach for recognizing text
that cannot be reliably segmented into characters, as is the case with most offline
and online handwriting in non-hieroglyphic scripts.

SIC recognition is based on local matches between unsegmented patterns at
both the feature and lexical levels. At the feature level, the unknown pattern
is compared to a known (reference) string of features, and the results are cap-
tured in the form of a match graph. Another matching process is used to find
polygram co-occurrences between the lexical transcripts of the reference string
and every class to be recognized. In a second-level matching, the order of feature
co-occurrences is compared to the order of polygram co-occurrence in the lexical
transcript of each class, and the unknown pattern is given the label of the best
matching lexical class.

SIC offers distinct advantages over prevailing approaches. It avoids the usual
integrated segmentation-by-recognition loop. Unlike other whole-word recogni-
tion methods, SIC does not need feature-level samples of the words to be rec-
ognized. Finally, unlike methods based on Hidden Markov Models, it does not
require estimation of an enormous number of parameters by a fragile bootstrap
process. Furthermore, SIC can compensate for noisy features or inaccurate fea-
ture matching by increasing the length of the reference set.

We introduced SIC in [6,7] with a representation based on ordered bipartite
graphs and established its advantages through simulations with a significant
amount of noise. Later investigations showed that, in the presence of excessive
noise, the sub-graph isomorphism based approach to the second-level matching
requires an unreasonably large reference set [8,9]. A maximum-likelihood ap-
proach [10] avoids this computational bottleneck in the second-level matching.
This method seems promising for Arabic recognition, so we describe in some
detail how we build candidate solutions to the query; interested readers will find
full technical details in [10,11].
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The second-level matching assigns the labels of the best-fitting segments in
the reference set to each matching segment in the query. The assignment is
constrained by the order of the (possibly overlapping) matches. The probability
of each candidate solution to the query is computed as follows.

With a large enough reference set, the feature matches between the query
and the words in the reference string cover most, if not all, of any query word.
Further, a feature match may or may not occur between the query and any given
reference word or phrase; the same also holds true for a lexical match (bigrams
or higher polygrams) between the pair. Thus, when a candidate solution to the
query is built by assigning a polygram to each matched feature segment in the
query, one of four possible conditions applies to the assignment with respect to
every reference word. The assigned polygram:

1. occurs in the reference word, and there is a segment match (valid match),
2. does not occur in the reference word, but there is a segment match (spurious

match),
3. occurs, but there is no segment match (missed match), and
4. does not occur, and there is no segment match (correct reject).

The conditional probabilities of these events can be estimated by matching the
reference words against each other. Then, they are used to estimate the likelihood
of each candidate solution and the solution with the maximum likelihood is
chosen.

While our work on SIC has been restricted to English handwriting, we believe
it would apply well to Arabic handwriting because the two languages share many
common characteristics. These include linear order of writing, strong baseline,
and three well-defined zones (ascender, descender, and median). Other unique
features of Arabic writing also argue favorably for SIC:

– Connection of adjacent letters is prescribed by rigorous rules in Arabic. The
resulting connected components at the sub-word level (PAWs) may them-
selves be connected by hasty writers. The segment-free recognition of SIC
has been demonstrated to work on cursive English.

– Different shapes of letters at the beginning, middle, and end of a PAW require
only that sufficient instances of each kind be included in the reference set.

– Occasionally, Arabic writing breaks from the usual right-to-left order by
placing two successive characters one on top of the other. If this happens
with some consistency in the writing, a feature-level match of the compound
character in the unknown word and the reference string would be correlated
in SIC with the corresponding bigram in the second-level matching. Similar
considerations apply to the recognition of letters that are sometimes written
out of sequence by Arabic writers.

To substantiate these claims, we have recently initiated work on applying SIC
to recognize offline handwriting using a sample of images from the database of
handwritten Arabic town names [12]. At this point, we have completed only the
first-level matching at the feature and lexical levels. The features were adopted
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from English handwriting with minor variations; we expect substantial improve-
ment with feature sets specifically developed for Arabic writing, such as the one
reported in [13].

In our preliminary explorations, we selected a reference set of eight town
names (numbered 2, 7, 8, 29, 45, 48, 51, and 52), transcribed by writer ae07. We
chose four other town names (numbered 1, 3, 14, and 42) by the same writer as
query words. The latter had good bigram coverage by the reference set. We used
the Smith-Waterman algorithm [14] to find the local alignments (matches) for
feature-level matching. The algorithm uses a flexible cost function that allows
for mismatches, insertions, and deletions and finds the optimal sequence of such
steps needed to match the two subsequences. For a given cost function, it finds
the strongest matches starting at every position of the query string against
the reference string. False matches abound at shorter segments, hence match-
score thresholds are set to minimize the likelihood of a false match. Empirically,
this is found to filter out most of the matches corresponding to unigrams and
character fragments. The same algorithm was adapted to lexical matching of the
transcripts of the query and reference strings.

Two examples of the lexical and feature match graphs, shown in Figs. 1-4,
convey a sense of how the SIC approach might apply to Arabic handwriting
recognition. The same query, ae07 014, is matched with the reference ae07 002
in Figs. 1-2 and with the reference ae07 045 in Figs. 3-4.

In Figs. 1 and 3, we show the distance matrices constructed using the Smith-
Waterman algorithm, with the lexical comparison depicted on the left side of the
figure (part (a)) and the signal comparison depicted on the right side of the figure
(part (b)). Figs. 2 and 4, on the other hand, present the induced match graphs,
with part (a) showing the lexical match graph and part (b) showing the feature
match graph. The strength of a match is shown as a positive-integer weight
on the corresponding edge in the graph; it indicates the extent of the matching
segments. For visualization purposes, the match strength is also denoted by the
thickness of edges in the figures. Typically, the lexical matching is conducted
for exact bigram and higher-order n-gram matches and results in one or two
matches. The feature matching often yields many more edges for the same pair
of words, even for a threshold value that is high enough to minimize single-
character matches. In these examples, we have chosen to show only the top-three
candidate edges in each case.

Fig. 2(a) shows that only one lexical match exists in this particular example:
the bigram (aaA laB) at position 5 in the query word matches with the same
bigram at position 5 in the reference word, where the positions are counted from
right-to-left in accordance with the Arabic writing convention. In Fig. 2(b), this
lexical match is correctly identified by the strongest match, of strength 370, in
the feature graph. However, the feature graph also includes two spurious edges,
of strength 365 and 360, respectively, that do not have corresponding edges in
the lexical graph.

In the second example, Fig. 4(a) shows two lexical matches: a 4-gram at the
beginning of the query word matching at position 5 in the reference word and a
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(a)

teE taB aaA waE laMllL laB aaA raA aaA waAllL daA

raE

heB

aaE

zaMllL

laB

aaA

yaA

daE

yaM

seB (b)

Fig. 1. Lexical (a) and feature (b) distance matrices for query ae07 014 vs. reference
ae07 002

(a)

raE heB aaE zaMllL laB aaA yaA daE yaM seB

teE taB aaA waE laMllL laB aaA raA aaA waAllL daA

2

(b)

370
360

305

Fig. 2. Lexical (a) and feature (b) match graphs for query ae07 014 vs. reference
ae07 002

trigram matching at the end of both the words. Both are also found in the fea-
ture graph, in Fig. 4(b), among the top-3 matches. However, the strongest edge, of
strength 925, corresponds to the trigram, and the next strongest edge, of strength
545, corresponds to the 4-gram. The third edge, of strength 250, is spurious. We
note that, because of both signal noise and variability in the character-widths, the



224 D. Lopresti et al.

(a)

raE heB aaE zaB yaA daE yaM seB ayE yaB aaE baB raA

raE

heB

aaE

zaMllL

laB

aaA

yaA

daE

yaM

seB (b)

Fig. 3. Lexical (a) and feature (b) distance matrices for query ae07 014 vs. reference
ae07 045

(a)

raE heB aaE zaMllL laB aaA yaA daE yaM seB

raE heB aaE zaB yaA daE yaM seB ayE yaB aaE baB raA

4
3

(b)

925
545

350

Fig. 4. Lexical (a) and feature (b) match graphs for query ae07 014 vs. reference
ae07 045

strength of a correctly matched edge in the feature graph only weakly correlates
with the strength of its corresponding edge in the lexical graph.

Even though the feature set used in our examples is not particularly well-
adapted to Arabic, the feature matching process correctly selects the lexical
matches in many cases. However, many spurious matches occur as well. Our
second-level matching process, described in [10], is shown to be robust against a
large number of spurious matches, but at the expense of increased computation
time. Therefore, we plan to explore a post-processing approach to eliminate some
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bad matches. The basic idea here is to use non-sequential features to screen the
2-D regions identified by every feature match. Hull [15] employs a similar idea
in another context, to select candidates for whole-word recognition, even when
they are printed in different fonts. Consider, for example, the feature graph
in Fig. 4(b) showing the top-3 matches. The image region in the query word
corresponding to the weakest edge, which has the strength of 250, has a flat
stroke with a diacritic mark above it while that corresponding to the reference
word has diacritic marks below the stroke. It should be possible to reject this
match based on 2-D features that summarize the dominant directions at each
black pixel in different sub-regions of the two images.

3 Chinese Character Recognition

Almost any method can recognize neat handwritten Chinese with better than
85% accuracy, and newsprint at over 95%. Making allowance for the usual 2:1
reject/error trade-off, this implies that we must concentrate on 35% of the hand-
written material and 15% of the print. These figures are based on the standard-
ized character forms used in the People’s Republic of China, which are somewhat
more difficult to recognize than the characters used in Taiwan, Japan, and Korea
because the simplifications fifty years ago removed many “redundant” strokes.

Printed Chinese characters are usually fixed-pitch, without ascenders or de-
scenders, and all the characters fit into the same size, horizontally aligned,
bounding boxes. Whether the reading order is left-to-right or top-to-bottom
is easily determined. Segmentation is, however, a major source of error in hand-
writing. Rushed writers connect and even overlap characters, do not adhere to a
clear baseline, and cannot squeeze complex characters into bounding boxes that
are ample for simpler characters.

Both handwriting and print exhibit pairs (occasionally even triples) of char-
acters with almost identical shapes but different meanings. (Some researchers
deliberately exclude such confusion pairs from reported error statistics.) Human
readers resolve such ambiguities through broad context. A far more restricted
set of language constraints is also used in Chinese OCR. Dictionary (lexicon)
look-up cannot be applied in the same way as in Western languages, but the
extreme skew of the distribution of unigrams and of two- and three-character
sequences can be readily exploited. We note, in particular, that the number of
Chinese family and given names, where mistakes cannot be tolerated, is less
than in most Western nations. Foreign names may be transliterated or printed
in their native script.

We discussed a new approach to segmentation-free character recognition in the
section on Arabic. Here, we present style-constrained field classification, which is
the only recourse when there is insufficient linguistic context. When we cannot
read a letter, we look for easier-to-recognize instances of the same shape. Other
instances of an unknown character may be easier to classify because there is
less (or different) noise, or they are segmented better, or because there is more
language context. Adaptive algorithms that benefit from typeface and writer
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Fig. 5. Two Han confusion pairs (ri/yue and dao/diao) in seven fonts. The left column
and its transliterations are the font names. On the right, are a few of the 7x6/2=21
possible different-font confusion pairs, on which a conventional singlet classifier is likely
to make errors.

intra-class consistency of this kind have been known for decades [16,17,18,19],
but have been incorporated into commercial systems only recently [20]. The
scope of adaptation is typically a page: it is assumed that each page is written
by a single person, or printed in a limited set of typefaces. A set of reliable
prototypes is collected in a first pass, and the remaining problematic characters
are recognized in one or more subsequent passes.

Fig. 5 shows some easily confused characters where adaptation can help. (We
use printed examples for ease of interpretation by readers who cannot read Chi-
nese. The handwritten version of these characters are, of course, even more
ambiguous.) However, adaptation works well only with long fields, where there
are several samples of each class. In Chinese, much longer fields are needed than
in alphabetic languages.

We have recently demonstrated a much less intuitive aspect of local shape
consistency that we call inter-class style. The underlying idea is simply that
knowing how an individual writes a g or a p may help us predict how she
may write a q. In fact, the shape of every class provides some information about
every other class. In a statistical framework, we say that the features of one class
are style-conditionally dependent on the features of another class. Abandoning
the customary independence assumption leads to a more complex mathematical
framework. Nevertheless, the optimal maximum a posteriori (MAP) classifier can
be formulated neatly [21,22,23]. In the last three years, we have demonstrated
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Fig. 6. Scenarios faced by a singlet classifier (above) and by a pair classifier (below),
on two pairs of similar characters. When it is known that both characters are from
the same style (font or writer), the confusions are more easily resolved by a style-
constrained classifier with additional information from another character in the same
style.

significant gains in accuracy through style-constrained field classification on both
printed and hand-printed digits. Fig. 6 suggests why pairs of Chinese characters
are easier to classify than individual characters.

We note that printers, copiers, scanners, and cameras also introduce usable
style constraints. Human readers resort to field classification when necessary.
Like humans, machines must also be enabled to do field classification, but only
when needed as it is expensive. The number of field classes increases exponen-
tially with field length. Whereas with numerals we used field lengths up to five,
for Chinese we propose to apply style constraints only to selected pairs and
triples.

For the sake of completeness, we note that font recognition is an inefficient
form of style-constrained classification. It generally requires separate features for
font and class identification, becomes confused when fonts share some shapes,
wastes statistical evidence on identifying the font when only class labels are
wanted, and cannot accommodate font miscegenation.

4 Interaction

All OCR systems benefit from some human help, typically at the beginning or
end of the process. Scanning is almost always checked, because even current
scanners occasionally bungle digitization. At the beginning, the operator may
label some unusual characters, select a language model, or provide general format
information. He or she may also occasionally assist page segmentation. After
OCR has taken place, low-confidence labels are verified or corrected. When there
are too many errors, the entire page may be keyed-in instead of corrected.

Current OCR systems do not make the most efficient use of the operator,
perhaps because such work is often outsourced and off-shored. However, for
urgent and critical applications, the operator may well be the end-user. Workers
with other primary missions are not likely to tolerate the repetitive routine of
data entry personnel. The interaction therefore must take place wherever and
whenever it is most effective and, above all, it should not be wasted. The software
should attempt every task. The operator must, however, have the opportunity
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of correcting the result whenever necessary. Whether a particular error should
be corrected requires the kind of judgment that, at present, machines lack.

We have made the case for a personal, mobile, multilingual support system
at SDIUT05 [5], on interactive table interpretation at DAS06 [24], and on large-
scale document entry at DIAL06 [24]. We have argued that every operator action
should result in some change in the configuration of the system that decreases
the likelihood of the same situation occurring again. In other words, the system
must improve with use.

5 Discussion

The ideas we have described in this paper arise from an underlying philosophy
that in-house training sets for most offline handwriting recognition tasks are
never large enough and never representative enough. To escape from this con-
straint, the system must be capable of seamlessly augmenting its operation as it
works on samples of actual (real-time, real-world) documents of interest. Sym-
bolic Indirect Correlation and Style-Constrained Classification are both designed
with this goal in mind.

SIC employs flexible matching based on subsequences of any length, although
these are typically chosen to be longer than a single character, grapheme, or
phoneme. Common distortions in handwriting, camera- and tablet-based OCR
(stretching, contraction), and speech (time-warping) can be accommodated. A
general paradigm, the basic notion of SIC is independent of medium, feature set,
and vocabulary. Perhaps SIC’s biggest advantage is that no training is necessary
- all that is required is a labeled reference set, as in the case of Nearest Neighbor
classification - thus allowing for unsupervised adaptation. Domain-dependent
recognition lexicons can be created “on-the-fly.”

SCC exploits the observation that in many applications, including, most no-
tably, single-author offline handwriting recognition, patterns occur in isogenous
(same-source) groups (fields). Other examples of isogenous fields include text files
printed using the same font, successive issues of a given newspaper or magazine,
and documents created using the same printer, photocopier, or fax machine, or
acquired using the same scanner or camera. For handwriting, an author’s distinc-
tive style can include slant, formation of ascenders and descenders, inter-character
and inter-word spacing, ligatures, etc. A common source results in common traits
which SCC can take advantage of to improve recognition accuracy.

We conclude by offering a scenario where SIC and SCC might be applied prof-
itably. Imagine that a military or law enforcement operation uncovers a cache of
high-value documents authored by a small number of writers, and the inacces-
sibility of the language, or the complexities of the content, make it desirable to
digitize the information contained therein. Existing techniques are confounded.
It would take far too long and be much too expensive to label manually the
large quantities of training data required by traditional handwriting recognition
techniques; perhaps time is of the utmost urgency. SIC and SCC seem ideally
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suited to such situations: use SIC when segmentation is found to be difficult
(i.e., Arabic), and SCC when style can blur class differences (i.e., Chinese).

Both SIC and SCC are promising new approaches that can be applied to
the handwriting recognition problem. The groundwork has been laid, but future
work is needed to address feature selection, adaptation strategies, computational
efficiency, and user interfaces and interaction.
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Abstract. This paper introduces a script-independent methodology for multi-lingual 
offline handwriting recognition (OHR) based on the use of Hidden Markov Models 
(HMM). The OHR methodology extends our script-independent approach for OCR 
of machine-printed text images. The feature extraction, training, and recognition 
components of the system are all designed to be script independent. The HMM 
training and recognition components are based on our Byblos continuous speech 
recognition system. The HMM parameters are estimated automatically from the 
training data, without the need for laborious hand-written rules. The system does not 
require pre-segmentation of the data, neither at the word level nor at the character 
level. Thus, the system can handle languages with cursive handwritten scripts in a 
straightforward manner. The script independence of the system is demonstrated with 
experimental results in three scripts that exhibit significant differences in glyph 
characteristics: English, Chinese, and Arabic.  Results from an initial set of experi-
ments are presented to demonstrate the viability of the proposed methodology.  

1   Introduction 

Most offline handwriting recognition (OHR) systems are designed for a particular script 
or language.  In this paper, we introduce an approach to OHR that, in principle and by 
design, is script-independent and can be used for the vast majority of the world’s lan-
guages. In particular, the core feature extraction, training, and recognition components 
remain the same for all languages; only the data-specific components, such as the dic-
tionary and the language model, depend on the specific language. Except for the pre-
processing and feature extraction components, which are specific to OCR and OHR, the 
training and recognition components are taken without significant modification from our 
continuous speech recognition (CSR) system, called the BBN Byblos CSR system.  
Hence, we call our OHR system, the BBN Byblos OHR system. 

The basic modeling paradigm we employ is that of Hidden Markov Models (HMM) 
[1]. HMMs are capable of modeling the variability of a feature vector as a function of 
one independent variable. In speech [2], there is one natural independent variable: time. 
In OHR and OCR, there are two independent variables since text images are two-
dimensional (2-D), so 1-D HMMs cannot be used directly. We structure the OHR prob-
lem as a combination of two 1-D pattern recognition tasks. In the first task, called line 
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finding, we locate the individual lines of text on a page, then, recognize the text content 
of each line. 

Even the OHR problem at the level of a single line is, in truth, 2-D as well; however, 
we convert it into a 1-D problem by extracting a feature vector that is a function of only 
one dimension (usually horizontal position). The feature vector is extracted from narrow 
vertical strips along each line of text [32]. The fact that the feature vector we extract does 
not depend on the script being recognized gives one reason that our approach is script-
independent. The other reason is that the HMM modeling approach itself does not change 
with the script being recognized.  In particular, given no separate character segmentation 
component, neither in training nor in recognition, the same system can recognize scripts 
where the characters are separate or connected. To demonstrate the script-independence 
of our approach, we present OHR results in three different scripts: Arabic, Chinese, and 
English.  Arabic and English presents the challenge of dealing with a cursive script, and 
Chinese presents the challenge of dealing with a large number of characters. 

A number of research efforts have used HMMs in offline printed and handwriting rec-
ognition [3-31]. All these efforts attempt the recognition of only a single language or 
script.  From a methodological perspective, our approach differs each principally in the 
emphasis we place on script independence.  

In Section 2, we present the theoretical framework of the HMM paradigm.  Section 3 
gives a description of the BBN Byblos OHR system.  Sections 2 and 3 closely follow the 
related Sections in [32] and are summarized here for the convenience of the reader. In 
Section 4, we present experimental recognition results on English, Chinese and Arabic, 
and we conclude with a summary in Section 5. 

2   Theoretical Framework 

2.1   Problem Formulation  

We represent a line of text from a scanned image by a sequence of feature vectors X.  
The aim is to find the sequence of characters that maximizes P(C|X), the probability of a 
sequence of characters C, given the feature vector sequence X.  Using Bayes’ rule, 
P(C|X) may be written as: 

P(C|X) = P(X|C) . P(C)/P(X) (1) 

We call P(X|C) the feature model and P(C) the language model (or grammar).  P(X|C) 
models the feature vector sequence X, given a sequence of characters C, and is approxi-
mated as the product of the component probabilities, P(Xi|ci), where Xi is the sequence 
of feature vectors that corresponds to character ci.  The feature model for each character 
is given by a specific HMM. 

P(C), the language model, is the prior probability of a sequence of characters C; it ba-
sically provides a soft constraint on allowable character sequences. The language model 
used in the Byblos OCR system is an n-gram Markov model, which computes P(C) by 
multiplying the probabilities of consecutive groups of n characters or words.  P(X) in (1) 
is the a priori probability of the data and does not depend on C; therefore, we can maxi-
mize P(C|X) by maximizing the product P(X|C) P(C). 
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2.2   Hidden Markov Models 

A hidden Markov model (HMM) [1] is essentially a Markov chain with one significant 
difference: in a Markov chain a state associate with a unique, deterministic output value, 
whereas in an HMM each state associates with a probability distribution over all possible 
output values. (We use the word “output” because Markov models are generally thought 
of as generative models that produce the observed data as output.) Figure 1 shows a simple 
4-state HMM, with transitions and their probabilities, and the output probability distribu-
tion associated with each of the four states. These probability distributions are defined 
over the feature vector x, which is a high-dimensional vector.  The model shown in Figure 
1 is known as a left-to-right model, because it flows from left to right as one traverses the 
model in producing the output sequence. 

Given a sequence of feature vectors extracted from a line of text, the OHR or OCR 
problem is to find the sequence of states or characters that “generated” the observed se-
quence of feature vectors. However, because of the probabilistic nature of the output gen-
erated by a state, almost any sequence of states could, in principle, generate the observed 
output. Because it is not possible to uniquely map a sequence of feature vectors to a se-
quence of states/characters, the sequence of states that actually generated the vectors is 
hidden from the observer – hence the term hidden Markov model.  Nevertheless, we can 
compute the probability that the observed sequence of feature vectors could have been 
generated by a particular sequence of states. Of particular interest is the sequence of states 
that has the highest probability of having generated the observed feature-vector sequence. 
By using the Markov property of the HMM, we can find that optimal state sequence effi-
ciently using the Viterbi algorithm [32] or other search algorithms [33, 34].  The resulting 
sequence of characters becomes the output of the recognition component. 
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Fig. 1. An example of a 4-state, left-to-right, hidden Markov model (HMM) of the type used in 
the Byblos OCR system.  It includes one-state skips and self loops. 

3   Byblos OHR System  

The Byblos OHR system evolved from the Byblos OCR system. Therefore, in the follow-
ing, we first provide a brief review of the Byblos OCR system. This review is followed by 
a discussion of some features unique to the OHR task.  For a more detailed description of 
the OCR system, the reader is referred to [32]. 
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3.1   Review of Byblos OCR System 

The Byblos OCR system is a statistical, HMM-based recognition system that uses the 
Byblos HMM engine [32, 36-39], which was originally developed for speech recognition 
at BBN.  At present, the OCR system handles single columns of text containing one or 
more paragraphs. A separate page, layout analysis module segments each input image into 
single column text zones.  Figure 2 shows a block diagram of the system.  As indicated in 
the diagram, the OCR system can be sub-divided into two basic functional components: 
training and recognition. Both training and recognition have the same pre-processing and 
feature extraction stages. 

Preprocessing &
Feature Extraction

Character Modeling

Language Modeling

Orthographic Rules

Character Models

Lexicon & Grammar

Recognition Search

Character Sequence

Preprocessing &
Feature Extraction

ImagesTranscriptions

Training Recognition

Images

 

Fig. 2. Block diagram of the BBN OCR system 

3.1.1   Pre-processing  
The pre-processing stage has two functions: skew removal and line finding. We assume 
that the image has been skewed, owing to a rotation of the text during scanning. The  
details of our de-skewing algorithm are presented in [32]. After de-skewing, the image 
segment into lines of text using either an HMM-based or a connected-component based 
lgorithm. The choice of the particular line finding algorithm is based on the characteris-
tics of the data.  Details of the HMM line finding procedure are presented in [38]. In the 
result of the line finding program, each line of text is bounded at the top by one baseline 
and at the bottom by another. 

3.1.2   Feature Extraction 
For each line of text (as determined by the line finding process), features are computed 
from a sequence of overlapped windows.  For each window, also called a frame, several 
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features are computed. The feature extraction program typically computes a total of 81 
features per frame. We use Linear Discriminant Analysis (LDA) [35] to reduce the num-
ber of features per frame from 81 to, typically, 15.  The decision to use 15 LDA features 
was made empirically after conducting a set of experiments and choosing the number of 
features that resulted in the minimum character error rate.  The resulting vector of 15 LDA 
features is a compact numerical representation of the data in the frame and is the feature 
vector used in our recognition experiments. For a detailed description of the feature extrac-
tion procedure, refer to [32]. 

3.1.3   Training 
The OCR system models each character with a multi-state, left-to-right HMM; the model 
for a word is the concatenation of the models for the characters in the word. Each state has 
an associated output probability distribution over the features, as shown in Figure 1. Each 
output probability distribution is modeled as a weighted sum of Gaussians, called a Gaus-
sian mixture. A Gaussian mixture is completely given parameters by the means and vari-
ances of the component Gaussians, along with the weight of each Gaussian in the mixture. 
The number of states and the allowable transitions system parameters that can b e set 
includes for our experiments we have used 14-state, left-to-right HMMs. 

Training – the process of estimating the parameters (transition probabilities and feature 
probability distributions) of each of the character HMMs – uses what has been known, 
alternately, as the Baum-Welch [36], forward-backward, or expectation-maximization 
(EM) algorithm [37, 38]. It iteratively aligns the feature vectors with the character models 
to obtain maximum likelihood estimates of HMM parameters. The algorithm guarantees a 
convergence of a local maximum of the likelihood function. The feature probability distri-
butions in our system are characterized by the means, variances, and weights of the Gaus-
sian mixtures.  

Depending on the amount of available training data, it may not be possible to achieve 
robust estimates of all the HMM parameters for all the characters. That is one reason we 
use LDA to reduce the size of our feature vector. Another method used to reduce the total 
number of parameters in the system involves sharing some Gaussians across different 
character models. In particular, three such methods are available in our Byblos system: the 
Tied Mixture (TM) mode, the Character Tied Mixture (CTM) mode, and the State Tied 
Mixture Mode (STM) [44-46]. In the TM mode, we train only one set of Gaussians (re-
ferred to as a codebook of Gaussians or just a codebook) shared between all states of all 
character models. The individuality of each state output probability distribution is charac-
terized solely by the specific component mixture weights. In the CTM mode, we train one 
codebook of Gaussians for each character model; the Gaussians in a character codebook 
are thus shared among the states of the model for that character, but no sharing happens 
across characters. The CTM mode offers a greater number of free parameters and, with it, 
the possibility of better performance, subject to the availability of sufficient data for train-
ing all the parameters.  For purposes of clarity, the STM mode is explained in Section 
4.1.2 (English Experimental Results). 

The training process is performed as follows:  assume that, for each line of text, we are 
given the corresponding ground truth, which simply contains the sequence of characters 
on that line. Note that no information is given about the location of each character on the 
line; that is, no pre-segmentation is necessary.  The training algorithm automatically and 
iteratively aligns the sequence of feature vectors along the line of text with the sequence of 
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character models.  This is why this method does not differ given connected characters or 
not, and why it can handle languages with connected script, as well as other scripts where 
the characters are not connected.  It also explains why touching characters, from a fax or 
other degradations, do not require any special handling with this method. 

3.1.4   Recognition 
After pre-processing a line of text and performing feature extraction, as described above, 
the recognition process consists of a search for the sequence of character models with the 
highest probability of having generated the observed sequence of feature vectors, given the 
trained character models, a possible word lexicon, and a statistical language model of the 
possible character or word sequences.  The recognition search is a two-pass [34, 35] (a 
forward pass and a backward pass) beam search for the most likely sequence of characters.  
The width of the search beam can be set as a system parameter.  Typically, lowering the 
beam width increases the speed but degrades the accuracy of recognition. The forward 
pass provides an approximate but efficient procedure for generating a small list of charac-
ter sequences that are possible candidates for being the most likely sequence.  The back-
ward pass gives a more detailed search for the most likely character sequence within this 
small list.  Even though we typically use the same set of character HMMs in the forward 
and backward passes, the search program itself does not impose any such constraint, i.e., if 
needed we can use two different sets of character HMMs, one in the forward and the other 
in the backward pass.  

The use of a word lexicon during recognition is optional, and its use generally results in 
a lower error rate. The lexicon is estimated from a suitably large text corpus.  The lan-
guage model, which provides the probability of any character or word sequence, is also 
estimated from the same corpus.  Note that the text corpus here does not require the pres-
ence of corresponding images; only the sequence of words in the text is needed. 

3.2   Slant Correction 

Handwritten text exhibits many differences from machine-printed text, all of which make 
the OHR task much more difficult than machine-printed text recognition. Critical differ-
ences include slanted writing, relative differences in the sizes of various characters, non-
linear baseline even within a single word, and trailing strokes that hang above or below 
neighboring characters. These differences need to be either normalized, or modeled effec-
tively to achieve reasonably high recognition accuracy. 

The OHR effort reported in this paper was initiated recently, and the system is currently 
under development. Recognizing the importance of slant normalization in handwriting 
recognition, our first modification of the OCR pre-processing component incorporate a 
slant correction algorithm that works on each connected component within a page of text.  
Typically, a connected component comprises a word or a fraction of a word. Other  
enhancements to the pre-processing (various types of normalization) and feature extraction 
(new features for handwriting) procedures will be designed and implemented as the work 
progresses. We conclude this section with a brief description of our slant correction  
algorithm. 

The goal of the slant correction step is to eliminate any slant in each word and to make 
the vertical strokes perpendicular to the baseline. To normalize the slant, we estimate, 
then apply a non-linear, 2-D transform to each connected component (CC) within an 
input (black-white) text image. 
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The estimation of the non-linear transform is based upon the approach presented in 
[47]. We apply the slant correction procedure iteratively until the estimated slant crests 
below a certain threshold. A section of the original image and the slant corrected images 
for each of four successive iterations of the correction procedure are shown in Table 1. 

Table 1. Example for Slant Correction 

Original 
Image

Iteration 1 

Iteration 2 

Iteration 3 

Iteration 4 

 

While repeated application of the transform progressively reduces the slant of text, a 
closer inspection of the image indicates that it leaves the perimeter of the text progres-
sively jagged. Table 2 shows a section of the original image and slant correctedimage after 
four applications of the non-linear transform. An area of future work involves improving 
the slant correction procedure to reduce the manifestation of such jagged perimeters. 

Table 2. (a) Section of original image, (b) Image after slant correction 

(a)

(b) 
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4   Experimental Results 

In this section we present the results of some early exploratory experiments, in which we 
have applied our Byblos Offline Handwriting Recognition (OHR) system to text handwrit-
ten in English and in Chinese.  These experiments have a goal of establishing the viability 
of the proposed approach for recognizing handwritten text.  System performance is meas-
ured using the word error rate (WER) or the character error rate (CER), defined as: 

referencein  s)(character  wordsofnumber  total

onssubstituti+insertions+deletions
 (CER) WER =  (2) 

where the reference is the manually generated ground truth. 
In the following, we present in separate sub-sections, the data sets, experimental 

procedure, and results for English, Chinese and Arabic OHR. 

4.1   English OHR 

4.1.1   Corpus 
For our English OHR experiments, we used the IAM database [48]. The IAM English 
database consists of unconstrained handwritten English sentences from the LOB corpus 
[49].  The database was collected by distributing forms with printed text to writers, and 
having them write the text on the forms in their own handwriting.  A total of 1,539 im-
ages from 657 different writers, scanned at a resolution of 300 dpi were used in our ex-
periments. We split the corpus into three sets: a training set, a development set, and a 
reserved test set.  In dividing the corpus into the three sets, we ensured that no writer’s 
handwriting appears both in test and in training (i.e., a writer-independent test condition).  
Further, to ensure fair language models, all handwritten samples of a form are assigned 
entirely to a single set (training, development, or test).  In other words, a particular pas-
sage of text is either in training or in (development) test, but never in both.  Table 3 con-
tains samples from the IAM database.  The samples illustrate the tremendous diversity in 
writing styles contained within the IAM database. 

Table 4 lists the characteristics of the training, development, and test sets used in our 
experiments. The IAM database includes annotations of the bounding boxes for each 
word. For the experiments reported in this paper, we used the word bounding box infor-
mation to determine the top and bottom of the lines of text within each image. 

4.1.2   English Results 
We ran a series of six training and recognition experiments on the IAM database in 
order to exercise different capabilities within our OHR system and to characterize 
their impact on the error rate. 

In the first experiment we used only the machine-printed versions of the forms.  We 
trained a set of individual English character HMMs using the machine-printed training data. 
Training was performed using 14-state context-independent HMMs.  For any given charac-
ter, the characters to its left and right defined its context. For example, in the word “cat,” 
character “a” is said to be in the context of “c” and “t”, whereas in the word “halibut”, the 
same character “a” is in the context of an “h” and an “l”. In machine-printed text, the shape 
of a character is typically unaffected by its context, and it is, therefore, appropriate to model 
each character with a single, context-independent HMM. In a context-independent configu-
ration, a single HMM is shared across all contexts of a character.  We used a CTM configu-
ration with a separate codebook of 256 Gaussians for each character HMM. 

 



 Multi-lingual Offline Handwriting Recognition Using Hidden Markov Models 239 

Table 3. Sample images from the IAM database 

 

Table 4. Characteristics of training, dev, and test sets for English experiments 

Characteristic Train Development Test 

Number of Images 1239 150 150 

Number of Lines 10726 1316 1311 

Total Number of 
Words 95512 11632 11308 

Unique Number of 
Words 10217 3135 3093 

Number of Writers 506 108 97 

 
 



240 P. Natarajan et al. 

Recognition was performed using the trained character HMMs and a character tri-
gram language model (LM).  We did not use a word lexicon during recognition or 
during post-processing.  We obtained a word error rate (WER) of 0.9% on the machine-
printed test set.  The fact that all the forms in the IAM database were rendered in a single 
font contributed to the low WER.  

In our second experiment, we trained a set of context-independent character HMMs 
using the IAM handwritten training data set.  The HMM and language model configura-
tion remained the same as in our first experiment.  The trained models when tested 
against the handwritten test data yielded a WER of 68.50%, with an associated CER of 
40.10%.  We then performed a third experiment in which we replaced the character tri-
gram language model with a word tri-gram language model. With a word LM, the WER 
dropped to 52.80% and the CER dropped to 33.80%. 

Unlike machine-printed data, handwritten text exhibits a certain amount of context 
dependency.  In other words, the shape of a particular character glyph can vary based on 
the character that precedes it and the one that follows it. Therefore, we ran a fourth ex-
periment in which we trained context-dependent character HMMs.  In the context-
dependent configuration, a separate HMM models each different contextual instance of a 
character, where a character’s context is defined by the characters appearing to its left 
and right. Using context-dependent HMMs and a word LM, we obtained a WER of 
49.30% and a CER of 31.00%. 

In our fifth experiment, we used a separate set of Gaussians for each state of all the 
context-dependent HMMs associated with a particular character. For example, we esti-
mated a set of 128 Gaussians for the first state of all HMMs associated with the character 
“a”, and a separate set of 128 Gaussians for the second state of all HMMs for “a”, and so 
forth. This configuration, referred to as the state tied mixture (STM) configuration, pro-
vides a better model for the structural evolution of a character glyph in the direction of 
writing.  With the STM model, we obtained a WER of 46.1% and a CER of 28.1%. 

After exercising the various modeling capabilities of our system, we ran a final ex-
periment in which we repeated the fifth experiment using slant-corrected versions of the 
training and test images, instead of the raw versions from the database.  Testing on the 
slant-corrected test images using context-dependent HMMs in a 128 Gaussian STM 
configuration, we obtained a WER of 40.1% and a CER of 23.3%.  The results of the 
six experiments are summarized in Table 5. 

We used a 10K word vocabulary derived from the IAM training transcriptions alone. 
The out-of-vocabulary (OOV) rate on the test set for the 10K IAM vocabulary was 
10.01%.  We also ran an experiment using a 30K word vocabulary that included words 
from our Broadcast News speech corpus.  The OOV rate using the 30K vocabulary was 
4.49%, but the WER and % Correct did not change significantly.  The only other work 
on this database using a HMM-based approach with statistical language models is [28].  
We cannot directly compare our results with that in [28] because of differences in the 
training and test sets. Nevertheless, using the results reported in [28] as a generic bench-
mark, our English OHR performance is clearly state-of-the-art. 
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Table 5. Summary of English recognition results 

Data Type HMM Configuration Language 
Model 

CER - 
% 

WER - 
% 

Machine print 
Context-independent, 
CTM 

Char 3-gram 0.2 0.9 

Handwriting 
Context-independent, 
CTM 

Char 3-gram 40.1 68.5 

Handwriting 
Context-independent, 
CTM 

Word 3-gram 33.8 52.8 

Handwriting Context-dependent, CTM Word 3-gram 31.0 49.3 

Handwriting Context-dependent, STM Word 3-gram 28.1 46.1 

Handwriting 
Context-dependent, STM 
Slant corrected images 

Word 3-gram 23.3 40.1 

4.2   Chinese OHR 

4.2.1   Chinese Handwriting Databases 
We used two different corpora for our experiments in Chinese: the ETL9B corpus and 
the BBN Chinese Handwriting (BBN-CH) database. 

The ETL9B database is published by the Japanese Technical Committee for Optical 
Character Recognition. The database was first released in 1993 and many researchers 
have reported recognition performance on that database. ETL9B contains 200 instances 
each of 71 Hiragana and 2,965 Kanji characters for a total of 3,036 unique characters. 
Following the split in [29], we used the first 20 instances of each character as the devel-
opment set, the last 20 instances of each character as our test set, and the remaining 160 
instances as our training set. 

The second Chinese corpus that we used comes from the BBN Chinese Handwrit-
ing (BBN-CH) database that was collected at BBN by distributing randomly selected 
pages from a machine-printed corpus, consisting of scanned pages from books and 
newspapers to six different authors. The authors were instructed to replicate the 
printed pages in their own handwriting. Each author on average contributed about 17 
pages of handwritten data. The data was scanned at a resolution of 300 dpi and manually 
transcribed using the source printed text as the reference.   

Data from five authors was reserved for training.  The amount of handwritten training 
data available is limited, so the models were bootstrapped with data from the machine 
printed corpus.   

The test set consists of a few pages from the five data sets in training, as well as data 
from the remaining author’s work not used for training. In the experimental results sec-
tion, we report the results for writer-dependent and writer-independent test conditions.  
Table 6 summarizes the characteristics of the database used for the experiments. 
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Table 6. Characteristics of the training and test sets for the BBN CH Database 

Characteristic Train-HW Train-MP Test-HW 

Number of images 77 352 (8)+20 

Number of lines 1106 11399 (101)+311 

Total Number of characters 24220 348147 (2134)+6966 

Number of unique characters 1641 4457 (601)+977 

Number of writers 5 - (5)+1 

4.2.2   Results on ETL Database 
To assess the viability of our OHR approach for Chinese handwriting recognition, we 
ran one experiment using images from the ETL9B database. To collect the ETL9B 
database, writers were instructed to write a single character on distributed sheets with 
clearly marked squares. Each character is scanned into a 64x63 black-white bitmap im-
age.  The images are all clean (we could not find any extraneous noise in the character 
images), and a visual review indicates that writers were careful in maintaining a high 
degree of legibility.  A review of the relevant literature [29-31] indicates that a common 
practice is to assume prior knowledge that each image contains only a single character.  
Many authors [29-31] have reported on the ELT9B database, and the reported recogni-
tion rates for a single system are greater than 96%. These recognition rates, which are 
unusually high in the context of an unconstrained handwriting recognition task, seem to 
stem from the characters in the database being carefully written and clearly segmented. 
The images are clean, and many reported techniques leverage characteristics specific to 
the database. 

We configured our Byblos OHR system with a 14-state HMM for each of the 3,036 
characters.  No slant correction occurred, and we computed script-independent fea-
tures directly from the raw images in the corpus. Given the nature of the corpus, a 
unigram language model with a uniform probability distribution was used. We trained 
on 160 instances of each of the characters and tested on 20 instances of each charac-
ter. Our first experiment, with no modification to the machine-printed training and 
recognition procedure, yielded a recognition accuracy of 83%.  While our recognition 
accuracy on this dataset rests significantly lower than that reported in the literature, 
our initial goal aimed simply to establish the viability of our approach. Given the 
unique nature of the ETL9B database, we are unsure whether improvements obtained 
on this database would continue with a more generic, unconstrained handwriting 
situation.  As a result, having established viability, we did not perform any additional 
experiments or optimizations on this database. 

4.2.3   Results on BBN-CH Database 
We ran two training experiments using the BBN-CH database.  In the first experiment 
we trained models using the 77-page, five writer handwritten data set, and in the sec-
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ond we trained models using the five writer handwritten data set along with the 352-
page machine-printed training data set. In the second experiment, we trained separate 
HMMs for machine-printed and handwritten versions of each character. 

Table 7. Chinese Recognition Results on the BBN-CH Database 

Training Data Test Data CER – %  Correct – % 

Writers-in-training 46.7 55.6 
77-page Handwritten 
 Set 

Fair Writer 66.7 37.7 

Writers-in-training N/A N/A 
77-Page Handwritten 
 Set with Jack-knifing Fair Writer (average 

with six runs) 
65.9 37.1 

Writers-in-training 44.1 57.5 352-page Machine- 
printed plus 77-page 
Handwritten Set Fair Writer 62.4 39.8 

 
The test set for all experiments consists of pages written by one writer not included 

in the training set, as well as a few pages written by writers who are represented in the 
training set (but the test pages themselves were not included in the training set). 

As can be seen from the results in Table 7, the writer-independent error rate on this 
set is 62.4% - surprisingly high given the much lower WER observed for English. We 
validated the writer-independent error rate by running a series of six jack-knifing ex-
periments in each of which we set aside data from one writer for testing (a different 
writer each time) and used the data from the remaining writers for training.  The jack-
knifing experiment yielded a CER of 65.9% for the writer-independent condition.  After 
an initial analysis of the results, we hypothesized that the lack of adequate training data 
primarily caused the high writer-independent (and, for that matter, the writer-in-
training) error rate.  Adding machine-printed data, which on the average exhibits strik-
ingly different characteristics than handwritten data, helped improve performance which 
is a good indicator that we have inadequate handwritten training data. 

To explore the correlation of CER with training data, we further categorized the 
handwritten training characters into five categories based on their frequency of occur-
rence in the training set.  Table 8 shows the five categories along with the associated 
CER and correct percentages. As seen from Table 8 data, the correlation between the 
frequency of the character in training and the associated error rate is striking – as the 
number of training instances increases, the CER decreases.  For 50 training samples 
or more, CER reduces dramatically.  
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Table 8. Number of characters, % CER (on writer-independent test set), and % Correct (on 
writer-independent test set) in each category 

Category Number of Training Samples CER – % Correct – % 

1 > 100 
28.5 75.48 

2 50 – 99 
48.4 55.18 

3 10 – 49 
73.9 28.83 

4 5 – 9 
96.9 3.92 

5 1 – 4 
99.6 0.45 

4.3   Arabic OHR 

4.3.1   Corpus 
For our Arabic OHR experiments, we used the IFN/ENIT corpus [50].  This corpus 
was collected by distributing forms with pre-selected text of Tunisian city names and 
postal codes to multiple writers and having them write the text on the forms. A total 
of 26,459 images consisting of 937 unique city names from 411 different writers are 
available for training and testing. These images have been distributed into four sets by 
the creators of the corpus: set a, set b, set c, and, set d.  For our experiments, we used 
sets a, b, and, c for training/development, and set d for test purposes. This split is 
exactly the same as reported in the ICDAR 2005 Arabic handwriting recognition 
competition [51].  As shown in Table 9, we reserved 1741 images from 30 writers in 
the training set for additional test/development purposes. Table 10 contains samples 
from the IFN/ENIT database.  These samples illustrate the broad diversity in writing 
styles contained within the database.  

Table 9. Characteristics of training, development, and test sets selected from IFN/ENIT corpus 

Characteristic Train Development Test 

Dataset a, b, and, c a, b, and, c D 

Number of Images 17983 1741 6735 

Number of Unique 
City Names 937 492 850 

Number of Writers 277 30 104 
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Table 10. Sample images from the IFN/ENIT database 

 

4.3.2   Arabic Results 
We ran multiple recognition experiments on the reserved (fair) development test set to 
determine the best configuration with which to decode the test set, set d. 

The first recognition experiment used 14-state context-independent character 
HMMs and a character tri-gram LM, both trained on the IFN/ENIT corpus. For train-
ing the character HMMs, we used a CTM configuration with a separate codebook of 
256 Gaussians for each character in the training set. With this configuration, the rec-
ognition accuracy on the city names in the development set was 40.7%.   

In our second experiment, we replaced the character tri-gram LM with a compound 
word LM, where words constituting a city name joined into a single, distinct token.  
With the compound word LM, we obtained a recognition accuracy of 88.2%, almost a 
factor of two better than using a character tri-gram LM.  

Next, we performed a third experiment in which we trained context-dependent charac-
ter HMMs. Using context-dependent HMMs and the compound word LM, we obtained a 
recognition accuracy of 88.6%, a 0.4% absolute improvement to using context-
independent character HMMs. The improvement in recognition accuracy with context-
dependent HMMs compared to context-independent HMMs appears significantly smaller 
than the improvement obtained on English OHR. For Arabic this occured because both 
our OCR and OHR systems use the contextual form of characters to train character 
HMMs. The contextual form in Arabic already captures the change in a character glyph 
due to the neighboring characters, therefore, it is not surprising that using context-
dependent HMMs yields only a small improvement.  

In our fourth experiment, we applied slant correction to the training data and re-trained 
the context-dependent character HMMs. Testing on the slant-corrected test images using 
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context-dependent HMMs and compound word LM resulted in a recognition accuracy of 
89.0% on city names in the development set.  

Next, we trained context-dependent character HMMs with a STM configuration. We 
used a separate set of 128 Gaussians to model the output distribution at each state for all 
contexts of a particular character. The recognition accuracy on city names in the devel-
opment set improved to 89.4%.  

In our sixth and final experiment, we used the recognition results from above to adapt 
the character HMMs for each writer (unsupervised adaptation). We used Maximum 
Likelihood Linear Regression (MLLR) [52] with a maximum of eight transformations to  
dapt the means of the Gaussians associated with each character HMM. The adapted 
models resulted in a recognition accuracy of 89.8%, a 0.4% absolute improvement com-
pared to un-adapted recognition.  

After exercising the various modeling capabilities of our system on the development 
set, we used the best configuration to recognize the images in test set, set d.  The recogni-
tion accuracy on set d with unsupervised writer-adapted context-dependent STM charac-
ter HMMs trained on slant-corrected images and compound word LM was 89.4%.   

Our HMM models on set d performed better than the best reported result in the 
ICDAR 2005 Arabic handwriting competition [51]. To assess the performance of the 
different model configurations on set d, we repeated all the recognition experiments on 
set d.  The recognition accuracy with all six configurations on development and test 
sets is summarized in Table 11. 

 

Table 11. Summary of recogniton experiments on IFN/ENIT Arabic handwriting corpus 

Accuracy  - % 
Character HMM Configuration 

Language 
Model 

Dev Set Set d 

Context-independent, CTM Character 40.7 41.1 

Context-independent, CTM Compound word 88.2 87.1 

Context-dependent, CTM Compound word 88.6 88.2 

Context-dependent, CTM, Slant 
corrected images 

Compound word 89.0 88.8 

Context-dependent, STM, Slant 
corrected images 

Compound word 89.4 89.0 

Context-dependent, STM, Slant 
corrected, unsupervised writer 
adaptation  

Compound word 89.8 89.4 

5   Summary and Future Work 

In this paper we have introduced a script-independent methodology for multi-lingual 
offline handwriting recognition based on Hidden Markov Models (HMM) used to model 
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characters.  This methodology extends our approach to the OCR of machine-printed text. 
While HMMs offer an inherently language-independent framework, it is the combination 
of that framework with a script-independent feature extraction procedure that enabled the 
development of a truly script-independent OHR/OCR system.  The framework allows us 
to incorporate other constraints, such as a language model, into the recognition process to 
improve overall system performance. 

At this early stage in the development of our OHR technology, the use of slant nor-
malization and context-dependent HMMs are the two salient differences between our 
OCR and OHR systems. The experimental results on English and Arabic handwritten 
corpora demonstrate the fundamental strength of our HMM approach in enabling script-
independent offline handwriting recognition.   

To our best knowledge, the best previous results on the English IAM database were 
reported in a recent June 2006 paper [28]. While the training and test sets used by the 
authors of [28] no doubt differ from ours, our work yielded better results than those re-
ported in [28], indicating that, at the very least, our OHR approach delivers state-of-the-
art performance in English.  

The recognition accuracy obtained by our system on the Arabic IFN/ENIT database 
can directly compare to results reported in ICDAR 2005 competition on Arabic offline 
handwriting [51]. The best result, with a fair training and test condition, reported in [51] 
is 88.95%, which is slightly worse than the accuracy of 89.4% obtained by our Arabic 
OHR system. 

In the case of Chinese, we demonstrated the viability of our approach using the 
ETL9B data set. Furthermore, the results on the unconstrained handwritten images in the 
BBN-CH corpus indicate that, given adequate data, reasonable recognition accuracy on 
clean data can be obtained. 

Notwithstanding the recognition performance reported in this paper, it is clear that, for 
the vast majority of real-world data, offline handwriting recognition continues toremain 
an open research problem. Nevertheless, we believe that the approach outlined in this 
paper offers a powerful framework for tackling that problem. Potential areas of future 
work include the development of more robust and discriminative features, including 
baseline-dependent features, better normalization techniques, and the development of 
better language modeling techniques. 

Acknowledgments. The authors are grateful to the creators of the IAM, ETL, and IFN/ 
ENIT corpora and for making them available to the document research community. 
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Abstract. India is a multi-lingual, multi-script country. Considerably less work has 
been done towards handwritten character recognition of Indian languages than for 
other languages. In this paper we propose a quadratic classifier based scheme for 
the recognition of off-line handwritten characters of three popular south Indian 
scripts: Kannada, Telugu, and Tamil. The features used here are mainly obtained 
from the directional information. For feature computation, the bounding box of a 
character is segmented into blocks, and the directional features are computed in 
each block. These blocks are then down-sampled by a Gaussian filter, and the fea-
tures obtained from the down-sampled blocks are fed to a modified quadratic clas-
sifier for recognition. Here, we used two sets of features. We used 64-dimensional 
features for high speed recognition and 400-dimensional features for high accuracy 
recognition. A five-fold cross validation technique was used for result computation, 
and we obtained 90.34%, 90.90%, and 96.73% accuracy rates from Kannada, Te-
lugu, and Tamil characters, respectively, from 400 dimensional features.  

1   Introduction 

Recognition of handwritten characters has been a popular research area for many years 
because of its various application potentials, such as postal automation, bank cheque 
processing, automatic data entry, etc. Many pieces of work exist for handwritten recogni-
tion of Roman, Japanese, Chinese, Korean, and Arabic scripts, and various approaches 
have been proposed by the researchers for handwritten character recognition [1, 2, 5, 12, 
28]. Although many scripts and languages exist in India (there are more than 19 official 
languages and 11 scripts), not much research has been done for the recognition of hand-
written Indian characters.  In this paper, we propose a system for the recognition of off-
line handwritten characters of three popular south Indian scripts: Kannada, Telugu, and 
Tamil. 

Much work has solved Indian printed characters, at present, OCR systems are com-
mercially available for some printed Indian scripts [3, 21, 24, 27]. Although several 
pieces of research exist on Indian printed characters, only a few attempts have been made 
towards the recognition of Indian off-line handwritten characters. Among off-line Indian 
handwritten work, maximum research has been done for Bangla.  Roy, et al. [29] pro-
posed a quadratic classifier based method for Bangla character recognition. Bhowmik, et 
al. [18] proposed a Multi Layer Perceptron (MLP) based scheme for the recognition of 
Bangla handwritten characters. Basu, et al. [19] proposed an MLP-based scheme for the 
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recognition of Bangla characters, and the feature set used for recognition included 24 
shadow features, 16 centroid features, and 36 longest-run features. Rahman, et al. [20] 
proposed a multistage approach for handwritten Bangla character recognition, and the 
major features used for the multistage approach include matra/shirorekha, upper part of 
the character, disjoint section of the character, vertical line and double vertical lines.  
Some systems have also been developed for unconstrained Bangla handwritten word 
recognition for Indian postal recognition [13,31].   

For handwritten Devnagari characters the first research report was published in 1977 
[30], but not much research work has been done since that. At present, researchers have  
begun to work on handwritten Devnagari numerals and characters, and few a research 
reports have been published recently. Hanmandlu and Murthy [6] proposed a Fuzzy 
model based recognition of handwritten Hindi (Hindi language is written in Devnagari 
script) numerals.  Bajaj, et al. [7] employed three different kinds of features, namely, 
density features, moment features, and descriptive component features, for classification 
of Devnagari numerals. Bhattacharaya, et al. [9] proposed a Multi-Layer Perceptron 
(MLP) neural network based classification approach for the recognition of Devnagari 
handwritten numerals. They considered multi-resolution features based on wavelet trans-
form in their proposed system. Kumar and Singh [8] proposed a Zernike moments based 
approach for Devnagari character recognition. Recently, Sharma, et al. [11] proposed a 
Devnagari character recognition method based on 64 dimensional chain code features. 

For Telugu script, a few pieces of work considered the recognition of machine-printed 
text [21, 22]. Some pieces of work on on-line recognition of Telugu script are also avail-
able in the literature [23]. But, to the best of our knowledge, no work considered the 
recognition of off-line handwritten Telugu characters. 

Like Telugu script, Kannada also has only few pieces of work for the recognition of its 
text [25]. Some literature is also available on on-line recognition of Kannada script [4]. 
But, to the best of our knowledge, only one work has looked at the recognition of off-line 
handwritten Kannada characters, and that work is reported by us [26]. 

Compared to Bangla and Devnagari script, pieces of research work on Tamil script are 
considerably fewer. Shanthi and Duraiswamy [15] discussed some pre-processing steps 
performed prior to the recognition of Tamil handwritten character recognition.  Chin-
nuswamy and Krishnamoorthy [16] used a linguistic approach for hand printed Tamil 
character recognition. Hewavitharana and Fernando [17] used a two-stage classification 
approach for Tamil character recognition. In the first stage a given character is classified 
into one of the three groups: core, ascending, and descending characters. The second 
stage uses a statistical classifier for final recognition. 

In this paper, we concentrate on the recognition of off-line handwritten characters of 
three popular South Indian scripts: Kannada, Telugu, and Tamil. The features for the 
classifier are obtained from the directional information [12] of the characters contour 
points. A Modified Quadratic Discriminant Function (MQDF) [12] recognizes the char-
acters. In the proposed scheme, at first, the bounding box of a character segments into 
blocks, and directional features are computed in each of these blocks. Next, these blocks 
are down sampled by a Gaussian filter. Finally, the features obtained from the down 
sampled blocks are to the classifier for recognition.  

The paper is organized as follows. In Section 2, we discuss the properties of the South 
Indian scripts considered here. Section 3 deals with data collection. The feature extraction 
procedure is presented in Section 4. Section 5 details the classifier used for the recognition. 
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The experimental results are shown in Section 6. Finally, the paper’s conclusion is given 
in Section 7. 

2   Properties of Kannada, Telugu and Tamil Languages 

Most of the Indian scripts originated from Brahmi script through various transformations. 
The writing style of Kannada, Telugu and Tamil scripts reads from left to right, and have 
no concept of upper/lower case. A brief overview of these scripts and their character are 
discussed below. 

Kannada is the official language of the Southern Indian state, Karnataka. Kannada, a 
Dravidian language, is spoken by about 44 million people in the Indian states of 
Karnataka, Andhra Pradesh, Tamil Nadu, and Maharashtra. The Kannada alphabets deve-
oped from the Kadamba and Cālukya scripts, descendents of Brahmi used between the 5th 
and 7th centuries AD. The modern Kannada script contains 14 vowels and 34 consonants, 
called basic characters. In Indian scripts, generally a vowel following a consonant takes a 
modified shape. These modified shapes are called modifiers or matra. A consonant/vowel 
following a consonant sometimes takes a compound orthographic shape, which we call 
compound character. As a result, almost 250 characters exist in most Indian scripts. In this 
paper, we will consider only the basic characters of Kannada, Telugu, and Tamil scripts. A 
sample of Kannada handwritten samples of basic characters is shown in Figure 1.  

Telugu is a popular script in India, being a Dravidian language spoken by about 75 
million people in the Southern Indian state, Andhra Pradesh, and its neighboring states. 
Telugu is also spoken in Bahrain, Fiji, Malaysia, Mauritius, Singapore, and the UAE. The 
alphabet of the modern Telugu script consists of 48 basic characters (14 vowels and 34 
consonants). Figure 2 shows a set of handwritten basic characters of Telugu script. From 
the figure, it may be noted that Telugu script shares many similarities with Kannada 
script.   

Tamil is one of the oldest languages in the world. The Tamil script derives from the 
Grantha script, a descendant of the ancient Brahmi script of India. Apart from India, it is 
also one of the official languages in Singapore, Malaysia, and Sri Lanka. Almost 62 
million people in India speak Tamil. It has the oldest literature amongst the Dravidian 
languages. The Government of India recognized Tamil as a classical language in 2004, 
and it is the first language to get such recognition. Tamil alphabets can be divided into a 
set of vowels, consonants, composite letters, and special letters. Tamil is written horizon-
tally from left to right, and the basic set of alphabets consists of 12 vowels, 23 consonants 
(18 basic consonants and 5 Grantha letters) and one special character. Grantha letters are 
used to write consonants borrowed from Sanskrit, and also some words of English origin. 
A set of Tamil basic characters is shown in Figure 3. 

The challenging part of Indian handwritten character recognition comes from the dis-
tinction between the similar shaped characters. Sometimes, a minuscule part distinguishes 
between two characters or numerals. These small distinguishing parts increase the recog-
nition complexity. Given the writing styles of different individuals, the same charact- 
ers may take different shapes, and two or more different characters may take a similar 
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(a) Vowels 

 
(b) Consonants 

Fig. 1. Handwritten samples of Kannada basic characters 

 
(a) Vowels 

 

(b) Consonants 

Fig. 2. Handwritten samples of Telugu basic characters 
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shape. These factors also increase the complexity of handwritten character recognition. 
Some examples of similar shape characters in Kannada, Telugu, and Tamil scripts are 
given in Figure 4. 

 
(a) Vowels 

 
    (b)  Consonants 

Fig. 3. Handwritten samples of Tamil basic characters 

         

(a) (b) 

 

 

(c) 

Fig. 4. Similar shaped characters in (a) Kannada, (b) Telugu, and (c) Tamil 
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3   Data Collection 

Data for the experiment was collected from different individuals of various professions. 
Data for different scripts has been collected from different Indian States, where these scripts 
are the official language. For example, the Kannada data set has been collected from Karna-
taka State of India because Kannada is the official language of Karnataka. Similarly, the 
Telugu and Tamil data sets were collected from Andhra Pradesh and Tamil Nadu, respec-
tively. 

To our best knowledge, no standard database exists for research work of Indian hand-
written characters. Currently, we are developing a database for Kannada, Telugu, and Tamil 
scripts. We considered 10,779, 10,872, and 10,216 data samples of Kannada, Telugu, and 
Tamil script, respectively, for our experiment.  

A flatbed scanner was used for digitization, with images in gray tone at 300 dpi and 
stored as Tagged Image File (TIF) format. We used the Otsu method [10] to convert gray 
tone images into two-tone (0 and 1) images.  

4   Feature Extraction 

We computed two feature sets for recognition purposes. We use a 64-dimensional feature 
for high-speed recognition and a 400-dimensional feature for high accuracy recognition. A 
comparative study on the recognition accuracy of these two different feature sets is pre-
sented in the result and discussion parts of the paper.  

64-dimensional Feature Extraction: 

Given a two-tone image, we first find the contour points of the image by the following 
algorithm. For all object points in the image, consider a 3 x 3 window surrounding the 
object point. If any of the four neighboring points (as shown in Figure 5(a)) is a background 
point, then this object point (P) is considered as a contour point. Otherwise, it is a non-
contour point.   

 

                                               (a)                                (b) 

Fig. 5. (a) A point P and its four neighbors marked by ‘X’, (b) For a point P the direction codes 
used for its eight neighboring points 
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The bounding box (minimum rectangle containing the character) of an input character is 
then divided into 7 x 7 blocks (as shown in Figure 6(c)). In each of these blocks, the direc-
tion chain code for each contour point is noted, and the frequency of the direction codes is 
computed. We use a chain code of four directions only [directions 0 (horizontal), 1 (45 
degree slanted), 2 (vertical) and 3 (135 degree slanted)]. See Figure 5(b) for an illustration 
of the four chain code directions considered here. We assume the chain code of direction 0 
and 4, 1 and 5, 2 and 6, 3 and 7, are the same. Thus, in each block we obtain an array of 
four integer values, representing the frequencies, and those frequency values become a 
feature. The histogram of the values of these four direction codes in each block of a Tamil 
character is shown in Figure 6(e). Thus, for 7 x 7 blocks, we get 7 x 7 x 4 =196 features. To 
reduce the feature dimension, after the histogram calculation in 7 x 7 blocks, the blocks are 
down sampled into 4x4 blocks by a Gaussian filter. As a result, we have 4 x 4 x 4 = 64 
features for recognition. The histogram of the values of all the chain code directions ob-
tained after down sampling is shown in Figure 6(f). The features are normalized before 
feeding them to the classifier for recognition.  

400-dimensional Feature Extraction: 

The gray-scale local-orientation histogram of the component is used for 400 dimensional 
feature extractions. To obtain 400-dimensional features, we apply the following steps.  

 
Step 1:  Size normalization of the input binary image is done. Here, we normalize the 
image into 126 x 126 pixels. 
Step 2: The input binary image is then converted into a gray-scale image, by ap-
plying a 2 × 2 mean filtering 5 times.  
Step 3: The gray-scale image is normalized so that the mean gray scale becomes 
zero with a maximum value of 1. 
Step 4:  Normalized image is then segmented into 9×9 blocks. 
Step 5: A Roberts filter is then applied on the image to obtain the gradient image. The 
arc tangent of the gradient (direction of gradient) is quantized into 16 directions, and 
the strength of the gradient is accumulated for each of the quantized direction. 
By strength of Gradient ( ),( yxf ) we mean  

( ) ( )22),( vuyxf Δ+Δ=  and  

by direction of gradient ( )),( yxθ  we mean 
u

v
yx

Δ
Δ= −1tan),(θ , where  

),()1,1( yxgyxgu −++=Δ , and )1,(),1( +−+=Δ yxgyxgv , and  

),( yxg  is a gray scale at (x, y) point. 

Step 6: Histograms of the values of 16 quantized directions are computed in each 9 x 
9 blocks. 
Step 7: 9×9 blocks are down sampled into 5×5 by a Gaussian filter. Thus, we obtain a 
5×5×16 = 400 dimensional feature. 
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Fig. 6. Example of 64-dimensional feature extraction. (a) Tamil character. (b) Contour ex-
tracted image shown in its bounding box. (c) Contour extracted image segmented into 7 x 7 
blocks. (d) Contour of the character in a block (zoomed version) and its chain code count. (e) 
Block-wise chain code histogram of contour points. (f) Histogram of chain code direction of 
contour points after down sampling into 4 x 4 blocks from 7 x 7 blocks. 

5   Recognition Classifier 

Recognition of characters in quadratic classifier [12] occurs by using the following 
discriminate function: 
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where X is the feature vector of an input character; M is a mean vector of samples; T
iΦ  is 

the ith eigenvector of the sample covariance matrix; λi is the ith eigenvalue of the sample 
covariance matrix; k is the number of eigenvalues considered here, n is the feature size; 
σ2 is the initial estimation of a variance; N is the number of learning samples; and No is a 
confidence constant for σ, and No is considered as  N/4 (3N/7), N/9 (N), and N/9 (N/4) for 
a 64 400-dimensional feature in Kannada, Telugu, and Tamil scripts, respectively. We do 
not use all the eigenvalues and their respective eigenvectors for the classification. For 64 
400-dimensional feature, we sort the eigenvector in descending order, and we consider 
first 20 (40), 60 (60), and 60 (50) eigenvalues, respectively, for Kannada, Telugu, and 
Tamil, and their respective eigenvectors for classification. The number of eigenvalues 
considered here is chosen from the experiment. 

6   Results and Discussion 

We have used a 5-fold cross validation scheme for recognition result calculation. Here 
the database of each script divides into five subsets, and are done on each subset using 
the other four subsets for learning. The recognition rates for all the five test subsets of a 
database averaged to obtain the accuracy. As mentioned earlier, we considered 10,779, 
10,872, and 10,216 data samples of Kannada, Telugu, and Tamil script, respectively, for 
our experiment. 

6.1   Global Recognition Results    

From experiments we note the overall character recognition accuracies of the proposed 
scheme for Kannada, Telugu, and Tamil scripts are 85.27%, 88.33% and 95.19%, respec-
tively, when a 64-dimensional feature vector is considered. We obtained 90.34%, 90.90%, 
and 96.73% for Kannada, Telugu, and Tamil script, respectively, when a 400-dimensional  
 

Table 1. Recognition accuracy of different top choices (with 0% rejection) 

Kannada Telugu Tamil Script 

Top 

Choices 
64 Dim 400 Dim 64 Dim 400 Dim 64 Dim 400 Dim 

1 85.27% 90.34% 88.33% 90.90% 95.19% 96.73% 

2 93.97% 96.50% 95.49% 96.58% 97.75% 98.79% 

3 96.59% 98.11% 96.94% 97.76% 98.39% 99.16% 

4 97.74% 98.58% 97.69% 98.29% 98.79% 99.43% 

5 98.38% 98.96% 98.17% 98.62% 98.99% 99.55% 
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feature vector was considered. Zero-percent rejection rate was considered for this 
accuracy calculation. We also computed a recognition accuracy of different top 
choices of both 64- and 400-dimensional feature vectors. The detail character recogni-
tion results obtained for the three scripts using 64- and 400-dimensional feature vec-
tors with different top choices are given in Table 1. From the table, the note a 7% 
accuracy increase in 64-dimension feature vector when we first considered the two 
top choices in Kannada and Telugu scripts, this happened mostly because of confu-
sion between the similar shaped character pairs.  

6.2   Results on Individual Characters     

We computed the accuracy of the individual characters of the three scripts and the accu-
racies of some of the characters based on 400-dimension feature vector are given in Ta-

ble 2. We obtained highest accuracy for the characters (98.66%), (100%),  
(100.00%) in Kannada, Telugu, and Tamil scripts, respectively. From the experiment, we 
also note the characters for which the lowest accuracy occurred in each of the scripts. We 
observed the lowest accuracy obtained in Kannada, Telugu, and Tamil scripts for charac-

ter  (60.27 %), (63.83%), and  (86.47%), respectively. The lower accuracy of 
these characters happened mostly because of shape similarity with other characters of 
their respective scripts. 

Table 2. Accuracies of some characters in Kannada, Telugu, and Tamil scripts (using a 400-
dimensional feature with 0% rejection) 

Kannada Telugu Tamil 

Character Accuracy Character Accuracy Character Accuracy 

 98.66%  100.00%  100.00% 

 98.21%  99.10%  99.65% 

 97.77% 
 

98.69% 
 

99.64% 

 97.75% 
 

98.23% 
 

99.64% 

 
97.35% 

 
97.81%  99.64% 

6.3   Confusing Pair Computation    

We also note the main confusing character pairs of different scripts, and we observe  
that main reason of such confusion comes from shape similarity. From Table 3, note that 

for the 400-dimensional feature, 36.69% samples of the Kannada character  were  
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mis-recognized as the Kannada character , or vice–versa. In Telugu (Tamil) the main 

confusing character pair was  and , ( and ), and they confused in 26.16% 
(10.33%) cases. Table 3 gives the details of some confusing pairs of characters in the dif-
ferent scripts.  

6.4   Error Versus Rejection Rate 

We also analyzed error verses rejection rate of the classifier. In Kannada, we note that 
8.70% errors occurred when the rejection rate was 2.05%. Only 4.90% error occurred 
when 10.14% data were rejected. 8.05% errors occurred when the rejection rate was 
2.06% and 4.53% errors occurred when 10.17% samples were rejected in Telugu script. 
In Tamil, we note that 2.26% errors occurred when the rejection rate was 2.04%. Only 
0.45% error occurred when 10.19% data were rejected. A rejection criterion of the  
 

Table 3. Some confusion character pairs in the three scripts 

Kannada Telugu Tamil 

Character pair % of 
confu-
sion

Character 
pair 

% of 
confu-
sion

Character pair % of 
confu-
sion 

36.69 26.16 10.33

25.89 16.77 7.77

18.56 12.77 3.31

14.17 8.79 1.57

 

Table 4. Rejection versus error rate (using 400 dimension feature) 

Kannada Telugu Tamil 

Rejection 
rate 

Error rate 
Rejection 

rate 
Error rate 

Rejection 
rate 

Error rate 

0.00 9.66 0.00 9.10 0.00 3.27 

2.05 8.70 2.06 8.05 2.04 2.26 

5.11 7.18 5.08 6.62 5.07 1.20 

7.11 6.08 7.10 5.67 7.14 0.67 

10.14 4.90 10.17 4.53 10.19 0.45 
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proposed system is mainly based on the difference of 1st and 2nd value of the discrimi-
nant function g(X). Table 4 presents the detail results of error versus rejection rate.  

6.5   Erroneous Results 

To understand why our system generates erroneous results, samples of erroneous charac-
ters are shown in Table 5. From the table it can be noted that given their shape similarity, 
such mis-recognition occurs (in the table, input handwritten samples are shown in the 
first row and the printed samples of their recognized class are shown in the respective 
columns of second row). Actual classes to which input samples belong are shown in 
respective columns of the third row of the table. 

Table 5. Some erroneous samples  

Script Kannada Telugu Tamil 

Input Samples    
(Handwritten)       

Recognized as   
(Printed sample)       

Actual Class     
(Printed sample)       

6.6   Comparison of Results 

Given no other work on Telugu off-line handwritten characters, we cannot compare 
our results for Telugu script.  

To our best knowledge, one work exists on Kannada off-line handwritten character 
recognition, and this work is reported by us [26]. We obtained 85.71% accuracy from 
that work, and we obtained 90.34% accuracy from this work. 

A few pieces of work exist on Tamil handwritten characters, and we compared the re-
sults of our proposed method with some of these work. The results are shown in Table 6. 
Chinuswamy, et al. [16] tested their system on 36 classes of Tamil characters and ob-
tained an accuracy of 60%. Hewavitharana, et al. [17] tested their system on 800 Tamil 
 

Table 6. Comparison of results  

Method No. of class Data Size Accuracy 

Chinnuswamy et.al. [16] 36 Not-known 60% 

Hewavitharana et.al. [17] 26 800 79.9% 

Proposed method 36 10216 96.73% 
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characters and obtained 79.9% accuracy. Instead of 36 classes, they considered only 26 
classes. Here, we consider 36 classes of Tamil characters and obtained 96.73% accuracy. 
So, our proposed method shows 16.83% better result than Hewavitharana et al. [17].  

7   Conclusion 

In this paper, we proposed a quadratic classifier based scheme for the recognition of three 
popular south Indian scripts: Kannada, Telugu and Tamil. The features used for recogni-
tion are obtained from the directional information of the image. The recognition results 
obtained are encouraging. The authors hope this work will help the researchers in future 
work for the recognition of other Indian script characters. 
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Abstract. This paper describes recent work on ensemble methods for
offline handwritten text line recognition. We discuss techniques to build
ensembles of recognizers by systematically altering the training data or
the system architecture. To combine the results of the ensemble members,
we propose to apply ROVER, a voting based framework commonly used
in continuous speech recognition. Additionally, we extend this frame-
work with a statistical combination method. The experimental evalua-
tion shows that the proposed ensemble methods have the potential to
improve the recognition accuracy compared to a single recognizer.

1 Introduction

The performance of computers in the recognition of machine printed text has
reached levels comparable to that of humans. However, the recognition of offline
handwritten text is still an open field with rather low recognition rates and many
challenges. Early research activities in offline handwriting recognition have been
restricted to isolated characters or numeral recognition. Next, the recognition of
cursively written words and digit sequences has been considered, motivated by
automatic check [1,2] and postal address reading [3,4].

Research on general handwritten text recognition, as considered in this pa-
per, started much later. As of today, this problem is considered widely unex-
plored, particularly if no constraints are imposed on the writer. There are large
differences in individual writing style as well as in writing instruments. The un-
derlying lexicon often contains a large amount of different word classes to be
distinguished. Furthermore, the correct number of words in a text line is un-
known in advance, which often leads to segmentation errors. For these reasons,
a high recognition accuracy is difficult to achieve. In the literature, recogni-
tion rates between 50% and 80% are reported, depending on the experimental
setup [5,6,7,8].

From the application oriented point of view, the automatic reading of general
handwritten text is interesting for tasks such as the transcription of handwritten
archives and the automatic reading of forms, handwritten faxes, personal notes,
and annotations on documents. However, often the current methodology does
not achieve recognition rates good enough for these applications.

D.S. Doermann and S. Jaeger (Eds.): SACH 2006, LNCS 4768, pp. 265–277, 2008.
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A possible strategy to improve the accuracy of pattern classifiers involves the
use of ensemble methods, which has been shown to be effective for different
classification problems [9,10,11]. By combining the results of multiple classifiers,
the recognition accuracy often improves compared to a single classifier. In other
words, given that the errors made by the individual classifiers are different, we
can expect that, by proper combination of multiple classifiers, errors made by
the individual classifiers can be avoided.

In handwriting recognition, several ensemble methods have been presented for
character [12], numeral [13,14,15], and word [16,17] recognition. An automatic
self-configuration scheme to combine multiple character recognition systems has
been proposed in [12]. For this method, genetic algorithms are used. In nu-
meral recognition, the application of statistical combination methods has been
reported in [13]. The behavior knowledge space methods were especially able to
successfully combine classifiers. A feature selection approach, based on a hierar-
chical algorithm, was used in [14] to build ensembles of digit recognizers. In [15],
a framework to combine numeral string recognizers was proposed that uses a
graph-based approach for combination. An evaluation of several decision com-
bination strategies for handwritten word recognition has been reported in [16].
Borda count methods, fuzzy integrals, and multilayer perceptrons have been
compared. In [17], various ensemble methods, including Bagging, Boosting, and
feature subspace methods have been applied to handwritten word recognition.

The investigation of ensemble methods for unconstrained offline handwritten
text line recognition began only recently [18,19,20,21,22]. The combination of
multiple text line recognition systems requires additional synchronisation effort
because the number of words in the output returned by the individual recognizers
might differ. This paper surveys ensemble methods recently applied to offline
handwritten text line recognition. Different possibilities to generate multiple
recognizers as well as different methods to combine the results of multiple text
line recognizers are discussed.

The rest of the paper is organized as follows. The next section introduces the
underlying handwritten text line recognizer. Section 3 describes the ensemble
creation methods, whereas the combination approaches are discussed in Sect. 4.
Experimental evaluation is presented in Sect. 5 and conclusions are drawn in the
last section of the paper.

2 Hidden Markov Model Based Recognizer

Most ensemble creation methods require a base recognizer to generate multiple
diverse recognizers. The offline handwritten text line recognition system we use
as the base recognizer is an enhanced version of the recognition system intro-
duced in [23]. Improvements happen at the language model integration level, as
well as in the modeling of the characters. The system can be divided into three
major parts: preprocessing, hidden Markov model (HMM) based recognition,
and postprocessing.
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Fig. 1. Preprocessing of an image of handwritten text. The first line shows the original
image, whereas the normalized image is shown on the second line.

To reduce the impact of different writing styles, a handwritten text line image
is normalized with respect to skew, slant, and baseline position in the prepro-
cessing phase. An example of this normalization appears in Fig. 1. After these
normalization steps, a handwritten text line is converted into a sequence of fea-
ture vectors. For this purpose, a sliding window of one pixel is used. The window
is moved from left to right, one pixel at each step and nine geometrical features
are extracted at each position of the sliding window.

In the HMM based recognition phase, each character is modeled with a lin-
ear HMM. The number of states is chosen individually for each character [8],
and twelve Gaussian mixture components model the output distribution in each
state. The Baum-Welch algorithm is used for the training of the HMMs, whereas
the recognition is performed by the Viterbi algorithm. A statistical language
model supports the Viterbi decoding step. The integration of this language model
is optimized on a validation set, as described in [8].

In the postprocessing phase, a confidence measure is computed for each rec-
ognized word w. This confidence measure indicates the degree of confidence the
recognizer has for its decision. It can be used either to reject certain parts of the
input or as a local weight when combining outputs of multiple recognizers. An
overview of different confidence measures for handwritten text line recognition
is given in [24].

3 Ensemble Creation

To build a multiple classifier system, two main issues must be addressed. First,
an ensemble creation strategy must be defined to generate multiple classifiers.
The second issue is to find an appropriate combination method that enables us
to fuse the results of the individual classifiers and to compute the final result. In
this section, the ensemble creation issue is addressed, and combination methods
are discussed in the next section.

Diversity among the individual ensemble members presents a key requirement
to obtain good results with multiple classifier methods [21,25,26]. The goal of
multiple classifier systems aims to correct the errors of one ensemble member
with the output of other ensemble members. To achieve this goal, we need a cer-
tain diversity among the ensemble members. Intuitively speaking, the members
should make no coincident errors. Several diversity measures have been proposed
in the literature for multi-class problems. Surveys can be found in [11,27].
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Basically, two different strategies can create multiple classifiers. In the first, the
training data alters, and, in the second, the architecture of the recognizers varies.

Many different methods have been proposed to achieve multiple classifiers
by supplying the classifier with different training data. The best known among
these methods are k-fold cross validation [28], Bagging [29], and Boosting [30]. In
k-fold cross validation, the data set divides into k subsets. Individual classifiers
are obtained by reserving one of the k subsets. Under the Bagging method, the
ensemble contains classifiers trained on bootstrap replicas of the training set.
Given a training set S of size N , the Bagging method builds n new training sets
S1, . . . , Sn each of size N , by randomly choosing elements of the original training
set. Boosting applies an iterative approach to creating an ensemble. Training
samples misrecognized by the current classifier are ’boosted’ in importance, so
the next recognizer has a higher likelihood to classify them correctly. The feature
subspace method described in Sect. 3.1 is based on altering the training data
as well. The individual recognizers use randomly chosen subsets of all available
features for training and testing.

Many fewer investigations have been conducted on using different classifier ar-
chitectures, or varying part of the classifiers. Typically such variations are problem
specific and so not generally applicable as different training sets. In [31], the num-
ber of hidden neurons varies to produce multiple artificial neural networks. For
handwritten text line recognition, we developed an approach that varies the lan-
guage model integration to get multiple recognition result as described in Sect. 3.2.

3.1 Random Feature Subspace

In the random feature subspace method [32], the individual recognizers use only
a subset of all available features for training and testing. These subsets are chosen
randomly with a fixed size d. The only constraint is that the same subset must
not be used twice.

For the handwriting recognition system we use, only nine features are avail-
able, which is a rather low number. The dimension of the subsets d is set to six.
This number has been found to be optimal for a similar experiment in the field
of handwritten word recognition [17].

3.2 Language Model Integration Variation

One possible architecture modification to create multiple recognition results al-
ters the integration of the statistical language model [19]. It has been shown that
those parts of a recognized word sequence sensitive to changes in the underlying
language model are often recognized incorrectly [24,33]. For these parts, we seek
alternative interpretations to improve the recognition rate.

For an HMM based recognition system with an integrated language model,
such as the one used in our experiments, the most likely word sequence Ŵ =
(w1, . . . , wm) for a given observation sequence X is computed as follows:

Ŵ = argmax
W

{
log p(X |W ) + α log p(W ) + mβ

}
(1)
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α β Recognition result

0 -100 Barry arm inch we enthusiasm
0 150 B my arm inch we m run rush :
30 -100 Barry and include enthusiasm
30 150 Barry and Eric have enthusiasm .
60 -100 Barry and include enthusiasm
60 150 Barry and in have enthusiasm .

Fig. 2. Multiple recognition results derived from specific integration of a language
model

According to Eq. 1, the likelihood of the optical model p(X |W ), which is
the result of the HMM decoding, combines with the likelihood p(W ) obtained
from the language model. Because HMM decoding and language model merely
produce approximations of probabilities, we use two additional parameters α
and β to control the integration of the language model. The parameter α, called
Grammar Scale Factor (GSF), weights the impact of the statistical language
model. The term Word Insertion Penalty (WIP) is used for parameter β, which
controls the segmentation rate of the recognizer. A higher value of β results in
more individual words to be output by the recognizer.

By varying the parameters α and β, various recognition results can be pro-
duced from the same image of a handwritten text. To obtain n recognition
results, we choose n different parameter pairs (αi, βi), where i = 1, . . . , n.

An example of recognizers based on different integration of a language model
appears in Fig. 2. Multiple transcriptions are produced for the handwritten text
”Barry and Eric have enthusiasm.” This example provides a good illustration
of the impact of the two parameters α and β. We observe that if we increase
parameter α, the influence of the language model is increased and nonsense
word sequences, for example ”B my arm inch we m run rush :”, are eliminated.
Furthermore, we see the influence of parameter β on the segmentation of Wi.
The average amount of words (including punctuation marks) increases if β is
increased.

3.3 Ensemble Member Selection

Instead of using all recognizers produced by an ensemble generation method in
one large ensemble, we apply an ensemble member selection strategy. The goal
is to use only those recognizers that add a benefit to the ensemble, a method
also known as overproduce-and-select [11].

On a validation set, we apply a greedy forward search to find the optimized
ensemble [20]. First, the individual recognizer that performs best is selected as
the first ensemble member. Then, we tentatively add each other available rec-
ognizers and measure the performance of the resulting new ensembles. The best
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performing ensemble continues, and, iteratively, we add the best remaining indi-
vidual recognizer to the ensemble. We continue until the last available recognizer
has been added. Then, we can determine the best performing ensemble among
all generated ensembles. Thus, with this greedy search, we can not only find
good performing ensembles but also optimize the ensemble size n.

4 Combination

Once having generated an ensemble of recognizers, an appropriate procedure
must be defined to combine the outputs of the members to derive the final result
of the ensemble.

Many methods for classifier combination have been proposed in the litera-
ture [10,11,34]. They depend on the type of output produced by the individual
classifiers. If the output is only the best-ranked class, then majority voting can
be applied. More sophisticated combination schemes look at dependencies be-
tween classifiers in the so-called Behavior-Knowledge Space (BKS) [13]. If the
classifiers’ output is a ranked list of classes, Borda count or related methods may
apply [35]. In the most general case, a classifier outputs a confidence value for
each class. The recognizer used in this paper outputs a confidence measure for
each recognized word in a text line (see Sect. 2 for details).

The combination of handwritten text line recognizers differs from most other
classifier combination problems due to the large number of classes, and because
the output of the recognizers are sequences of classes rather than simply a single
class. Given the large number of classes, standard statistical decision strategies
as BKS are not usually feasible because not enough training data is available
to estimate the required probabilities appropriately. Additionally, all classifier
combination rules discussed above do not directly apply if each recognizer of the
ensemble outputs a sequence of class names rather than a single class. Because
of segmentation errors it cannot be assumed that the sequences produced by the
different recognizers have the same length. Therefore, a synchronization mech-
anism is needed. It has been proposed to use dynamic programming techniques
to align the individual outputs of the recognizers. However, this topic is still
under research, and only a few solutions have been reported in the handwriting
recognition literature [15,18,36].

4.1 ROVER Combination

The Recognizer Output Voting Error Reduction (ROVER) framework was de-
veloped in the domain of speech recognition and first used to combine multiple
continuous speech recognizers [37]. The ROVER framework can be divided into
two modules, alignment and voting.

In the alignment module, we find an alignment of n word sequences. For com-
putational reasons, an incremental alignment algorithm is used. At the begin-
ning, the first two sequences align with a standard string matching algorithm [38]
resulting in a Word Transition Network (WTN). The third word sequence then
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mouth

-

,

organ .

-

,

mouth

truth

organ

or

.

go

R1 R2+ :
he

the

he

the

R1 R2+ R3( ) :+

R1: he mouth - organ.
R2: the mouth, organ.
R3: the truth - or go.

Fig. 3. Example of an iterative alignment of multiple recognition results

aligns with this WTN, resulting in a new WTN, which then aligns with the
fourth word sequence, and so on. We refer to [37] for further details.

The iterative alignment procedure does not guarantee an optimal solution
with minimal edit costs, as the alignment is affected by the order in which the
word sequences are considered. In practice, however, the sub-optimal alignment
produced by the algorithm often provides an adequate solution for the trade-off
between computational complexity and alignment accuracy.

An example of multiple sequence alignment using ROVER is shown in Fig. 3.
Given the image of the handwritten text, ’the mouth-organ’, the recognizers R1,
R2, and R3 produce three different results. In the first step, the results of R1
and R2 align in a single WTN. Subsequently, the result of R3 aligns with this
WTN.

The voting module combines the different word sequences after they are
aligned in a WTN. The goal is to identify the best scoring word sequence in
the WTN and extract it as the final result.

The decisions are made individually for each segment of the WTN. Thus,
neither adjacent segment has any effect on the current segment. Each decision
depends only on the size n of the ensemble, on the number of occurrences mw

of a word w in the current segment, and on the confidence measure cw of word
w. The confidence measure cw is defined as the maximum confidence measure
among all occurrences of w at the current position in the WTN. For each possible
word class w, we calculate the score sw as follows:

sw = λ
mw

n
+ (1 − λ)cw (2)

As a final result for the current segment, we then select the word class w with
the highest score sw.
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To apply Eq. 2, we have to determine the value of λ experimentally. Param-
eter λ weights the impact of the number of occurrences against the confidence
measure cw. Additionally, we determine the confidence measure cε for null tran-
sition arcs, because no confidence score associates with a null transition ε. For
this purpose, we probe various values of λ and cε on a validation set.

4.2 Statistical Decision

Various statistical decision strategies for combining the results of multiple clas-
sifiers have been proposed in the literature [10,13,39]. However, if the number
of classes is large, most methods are not feasible because not enough training
data is available to estimate the required probabilities sufficiently. In contrast,
the statistical decision method described below can handle an arbitrarily large
number of classes. It considers not the class label itself, but which recognizers
output a particular class label. The decision method extends the ROVER combi-
nation scheme. It uses the same alignment module, but applies a strategy other
than voting to find the final decision.

Having completed the alignment, we apply the statistical decision method to
each segment of the WTN. A feature vector Xw is constructed for each word class
w that occurs in the considered segment. The feature vector indicates whether
word w is output by a specific recognizer:

Xw = (xw,C1 , . . . , xw,Cn) (3)

where

xw,Ci =
{1 if classifier Ci outputs w

0 else (4)

The feature vector Xw is used as input to a Multi-Layer Perceptron (MLP).
The MLP consists of l input neurons, one hidden layer, and two output neurons.
One output neuron represents the score for w being correct, whereas the other
output neuron represents the score for w being incorrect under input Xw. The
score for correctness estimates the probability p(w is correct |Xw).

The final word class ŵ is then calculated by

ŵ = argmax
w

p(w is correct|Xw). (5)

Note that, in contrast to the ROVER combination scheme, the statistical
decision method does not require the recognizers to output confidence values.
Thus, it applies more generally.

An example of the statistical decision method is given in Fig. 4. The scanned
image of the handwritten text ’leave in the autumn’ appears in (a). In this
example, three different recognizers R1, R2, R3 are used. The outputs of these
recognizers align in a WTN, as shown in (b). Next, a binary feature vector is
built for each word that occurs in a segment according to Eq. 4. The resulting
feature vectors are listed in (c). For each of these vectors, the MLP calculates
the score for a correct decision (d). The final combination result, shown in (e),
is then derived according to Eq. 5.
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a) Input image of handwritten text:

(b) WTN including the aligned recognition results of R1, R2, R3:

Segment 1 Segment 2 Segment 3 Segment 4

R1: leave is the autumn
R2: leave in that autumn
R3: leave is that august

(c) Input feature vectors:

Segment 1: Xleave = (1, 1, 1)
Segment 2: Xis = (1, 0, 1) Xin = (0, 1, 0)
Segment 3: Xthe = (1, 0, 0) Xthat = (0, 1, 1)
Segment 4: Xautumn = (1, 1, 0) Xaugust = (0, 0, 1)

(d) Estimated probabilities for the correctness of a decision:

Segment 1: p(correct|Xleave) = 0.9
Segment 2: p(correct|Xis) = 0.5 p(correct|Xin) = 0.7
Segment 3: p(correct|Xthe) = 0.7 p(correct|Xthat) = 0.3
Segment 4: p(correct|Xautumn) = 0.6 p(correct|Xaugust) = 0.2

(e) Combination result:
leave in the autumn

Fig. 4. Example of the statistical decision procedure

5 Experimental Evaluation

In this section we present the experimental evaluation of the proposed ensemble
methods. Two main experiments have been conducted. In the first experiment,
ensembles derived from specific integration of a language model as described in
Sect. 3.2 are evaluated. In the second experiment, the feature subspace method
of Sect. 3.1 and the statistical decision method described in Sect. 4.2 are tested.
The experimental setup of the two experiments differs slightly, thus the results
cannot be compared directly.

All experiments reported in this paper make use of the HMM based recogni-
tion system described in Sect. 2. A bigram language model supports the HMM
decoding. A writer-independent task has been considered, which implies that no
information about the writers who contributed to the test set is available during
the training and validation phase. The text lines we used for training, validation,
and testing originate from the IAM1 database [40].

The experimental setup used in the second experiment differs from the one of
the first experiment in three aspects. First, it employs a larger test set containing
2,781 text lines by 161 writers (compared to 1,863 text lines from 128 writers).
Secondly, more text trains the statistical language model. Thirdly, the lexicon

1 The IAM database is publicly available for download at
http://www.iam.unibe.ch/∼fki/iamDB
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Table 1. Results on the test set. The columns show the different ensemble creation
methods whereas the rows represent different combination strategies.

Experiment 1 Experiment 2
LM Integration Feature Subspace

Reference System 67.35% 64.48%
ROVER Combination 68.03% 65.29%
Statistical Decision - 65.35%

used in the first experiment is closed over the test set and contains the 12,502
words given by the union of training, test, and validation set. In the second
experiment, the 20,000 most frequent words that occur in the corpora used to
train the language model are employed and no closing over the test set is done.
Thus, words may appear in the test set that do not occur among the 20,000
most frequent words included in the lexicon. This scenario is more realistic than
a closed test set because the texts in the test set are usually unknown in advance.

In the first experiment, we generate the recognizers by specific integration of
a statistical language model. Next, we select the best performing ensemble on a
validation set with the greedy forward search. Using the ROVER combination
scheme, we achieve a statistical significant improvement in the recognition ac-
curacy. The base recognition system attains a word level accuracy of 67.35%,
whereas the ensemble method achieves 68.03%.

In the experiments using the feature subspace recognizer, not only ROVER is
used to combine the recognizers’ results but also the statistical decision approach
described in Sect. 4.2. The single base recognizer achieves a word recognition ac-
curacy of 64.48%. The ensemble combined with the ROVER algorithm attains
an accuracy of 65.29%. The use of the novel statistical decision method slightly
improves this accuracy to 65.35%. Compared to the base recognizer, the im-
provements are statistically significant, whereas the difference between ROVER
and the statistical decision methods is not statistically significant.

Under both experimental setups, we improved the recognition performance by
the use of ensemble methods. The results of the two experiments are summarised
in Tab. 1.

6 Conclusions

In this paper we described recent work on multiple classifier methods for of-
fline handwritten text line recognition. We discussed the individual handwriting
recognizer, ensemble creation methods, and result combination schemes.

The handwritten text line recognizers described in this paper use hidden
Markov models. After the normalization of the image, a sliding window method
extracts nine geometrical features at each position. The character models use a
mixture of twelve Gaussians and an individual number of states. A statistical
language model supports the recognition step.
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Different ensemble generation methods, based on either altering the training
set or the system architecture, can build ensembles of handwritten text line
recognizers. We examined the use of the random feature subspace methods, as
well as the variation of the integration of the statistical language model in the
recognition step, to achieve multiple recognizers. To select the final ensemble
members, we applied a greedy forward search.

The combination of multiple text line recognizers requires a synchronization
process because the output word sequences of the individual ensemble members
might have different lengths. We applied the ROVER framework developed in
the field of speech recognition. This framework consists of two modules, align-
ment and voting. Furthermore, we developed an extension to this framework by
applying a statistical decision procedure instead of voting.

Experimental evaluation conducted on large sets of text lines from the IAM
database shows that the proposed ensemble methods have the potential to per-
form statistically significantly better than a single recognizer.
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